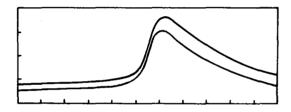
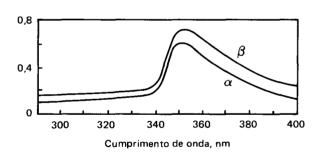
DETERMINAÇÃO DE SÍLICA EM SILICATOS POR ESPECTROFOTOMETRIA DIFERENCIAL COMO ÁCIDO α -MOLIBDOSSILÍCICO

Otto Alcides Ohlweiler, Jorge de Oliveira Meditsch e Sandra Silva

Instituto de Química, UFRGS, Porto Alegre, Brasil

(Recebido em 12/12/1980)


INTRODUÇÃO


A disponibilidade de um método para a determinação de sílica em silicatos, que seja ao mesmo tempo acurado e rápido, é altamente desejável. Como é sabido, vários métodos absorciométricos para a determinação de sílica baseados na formação de ácido molibdossilícico têm sido descritos. Presentemente, os melhores instrumentos permitem reduzir o erro relativo na medida da transmitância a 0,2% e, com isso, o erro analítico relativo pode baixar, em condições ideais, a cerca de 0,5%. Por outro lado, a aplicação da técnica espectrofotométrica diferencial, com o uso de tais instrumentos, viabiliza a determinação de componentes majoritários com erros relativos comparáveis à exatidão dos métodos gravimétricos e volumétricos. Todavia, o uso daquela técnica requer, afora equipamento adequado, que o sistema químico envolvido seja estável e reprodutível e um processo analítico cuidadosamente elaborado.

Em 1952, Strickland¹ postulou a existência de duas possíveis formas de ácido molibdossilícico, que denominou de ácidos α - e β -molibdossilícicos. Ademais, considerando a relação das concentrações dos fons hidrogênio e molibdato como o fator crítico para a formação de um ou outro dos ácidos, ele estabeleceu que, em soluções de molibdato contendo até cerca de 1,5 equivalente de ácido clorídrico por mol de MoO_4^{-2} , forma-se ácido- α como principal produto, ao passo que as soluções contendo mais de 1,5 equivalente dão progressivamente mais ácido- β . O ácido- β não é estável e, quando se forma, converte-se espontaneamente em ácido- α .

Mais recentemente, Truesdale e Smith² rejeitaram o critério da relação ácido/molibdato, introduzido por Strickland, mostrando que o ácido- α se forma em pH entre 3,8 e 4,8 e o ácido- β , entre pH 1,0 e 1,8; e que os rendimentos dos ácidos- α e - β (em pH 4,0 e 1,2) independem das concentrações de MoO₄⁻² entre 0,015 e 0,10 M. Também são importantes do ponto-de-vista analítico as observações dos referidos autores, em certos aspectos conflitantes com os dados até então aceitos, sobre os espectros de absorção dos ácidos- α e - β (Fig. 1). Para os comprimentos de onda entre 290 e 400 nm, a absortividade do ácido- β é sempre maior do que a do ácido- α ; as duas curvas não se cortam. Portanto, as condições experimentais em que se origina uma mistura dos ácidos- α e - β devem ser evitadas em um proces-

so analítico; não é possível, assim, desenvolver um processo colorimétrico envolvendo os dois ácidos, que seja independente da forma do ácido produzido, conforme chegou a ser anteriormente admitido³. Outra observação importante

Fit. 1 — Espectros de absorção dos ácidos α - e β -molibdossilícico segundo Truesdale e Smith.

é que os comprimentos de onda acima de 370 nm são os mais apropriados para fins analíticos, pois para comprimentos de onda menores, a absorbância é criticamente dependente do pH e da concentração de MoO_4^{-2} e, desta maneira, mais sujeita a ser afetada no desenvolvimento do sistema.

Embora a absortividade do ácido- β seja maior, para a determinação de sílica como um componente majoritário, a estabilidade e a reprodutibilidade são características mais importantes e, como tal, o ácido- α é logicamente a forma mais apropriada. Ringbom et al. 4 foram os primeiros a usar

o ácido- α com este fim, desenvolvendo o complexo amarelo em solução mantida em pH 3,0 a 3,7 (tampão de ácido monocloroacético-monocloroacetato de amônio) e assegurando a completa conversão $\beta \rightarrow \alpha$ mediante aquecimento a 100°C durante 5-10 minutos. A absorbância no processo de Ringbom depende da temperatura da solução; é dado um coeficiente de temperatura de 0,39% por grau centígrado. Note-se ainda que o processo não elimina a interferência de fosfato. Mais recentemente, Dolaberidze et al. 5 também usaram o ácido- α como base de um processo espectrofoto-métrico ordinário, em que o complexo amarelo é desenvolvido em pH 3,7 a 3,9 e inteiramente convertido à forma α depois de uma hora à temperatura ordinária.

O presente trabalho descreve um método para a determinação de sílica em silicatos por espectrofotometria diferencial como ácido-α. A amostra é atacada por fusão com uma mistura de trióxido de boro e carbonato de lítio (10:1). O ácido-α é desenvolvido em solução tamponada com ácido acético e acetato de sódio em pH~3,9. O processo analítico compreende uma série de estágios preliminares, que foram anteriormente elaborados para um método de determinação de sílica em silicatos gravimetricamente como molibdossilicato de oxina e que providenciam a remoção de fósforo, titânio e zircônio com o auxílio de resinas trocadoras de fons⁶.

Condições ótimas na espectrofotometria diferencial. Os fundamentos desta técnica foram completamente desenvolvidos no fim dos anos 40^{7-9} . Nela, a transmitância da amostra é medida contra um padrão de referência, de concentração conhecida mas menor do que a da amostra. Em outras palavras, o instrumento é ajustado em 100% de transmitância em relação ao referido padrão de referência; para obter a iluminação necessária, opera-se com uma abertura de fenda mais larga do que normalmente. A concentração da amostra será igual à concentração do padrão de referência mais um valor adicional, que é avaliado a partir da transmitância relativa da amostra e mediante aplicação da lei de Beer.

Na técnica diferencial, determina-se a diferença de concentração entre uma solução mais concentrada e o padrão de referência. E claro que a determinação da diferença não pode ser mais exata do que a determinação de concentração na espectrofotometria ordinária. Porém, na análise química, o interesse se concentra no valor da concentração total e, assim, o aspecto realmente importante é o erro relativo envolvido na avaliação da concentração total. O erro relativo é dado por³

$$\frac{(C_2 - C_1)}{C_2} = \frac{0,4343 \,\Delta T}{T_r (\log T_s + \log T_r)}$$

em que C_1 é a concentração do padrão de referência e C_2 , a concentração da solução mais concentrada; T_S , a transmitância absoluta (ou efetiva) do padrão de referência; T_I , a transmitância relativa da solução mais concentrada contra o padrão de referência; ΔT , a incerteza na leitura da escala de transmitância (erro fotométrico constante). Na Fig. 1,

o erro relativo como 0,4343 vezes o recíproco de T_x(logT_s + log T_r) é traçado como função da transmitância relativa, T_r; ΔT propositadamente não é especificado para efeito de generalização do gráfico. As curvas correspondem a padrões de referência com absorbâncias absolutas que são múltiplos de 0,4343: 0,0; 0,5; 1,0 e 4,0. A curva superior para A_s = 0,0 corresponde a medidas de transmitâncias ordinárias contra o solvente. O erro relativo é infinito para transmitâncias 0 e 1,00; ele decresce para transmitâncias intermediárias com um mínimo para 0,368. Logo que o valor de A_s torna-se maior do que zero, o erro relativo torna-se finito para a extremidade 1,00 da escala de transmitância. À medida que o valor da transmitância relativa se aproxima de zero, a totalidade das curvas tende para infinito. Na região de transmitância 1.00, todavia, o erro relativo decresce rapidamente com o incremento da absorbância do padrão de referência. O erro mínimo gradualmente se desloca de 0,368 para 1,00 sobre a escala da transmitância relativa à medida que a absorbância absoluta do padrão de referência aumenta. Quando A_s = 0,4343, o erro mínimo aparece para $T_r = 1,00$. Para valores maiores de A_s, os erros mínimos são obtidos quando T_r é superior a 1,00, mas esta condição é destituída de interesse prático.

Em face do exposto, é fácil definir as condições ótimas na espectrofotometria diferencial. A Tab. 1 dá os erros de análise relativos como função da absorbância absoluta do padrão de referência e da leitura da absorbância relativa suposto um erro fotométrico constante de 0,2% na determinação da transmitância. São dados os erros relativos em concentração para leituras feitas contra padrões de referência com absorbâncias absolutas de: 0,0; 0,5; 1,5 e 2,0.

Na prática, recomenda-se desenvolver o processo analítico de modo que seja usado um padrão de referência com absorbância não inferior a 1,00 e que, além disso, permita obter, para a solução desconhecida, uma absorbância relativa não superior a cerca de 0,300. O erro de análise relativo não pode ser reduzido a vontade, pois é impossível ajustar o instrumento para uma leitura de transmitância 1,00 inde-

Leitura da absorbância, A _r	Erro de análise relativo, p.p.m. 100% da escala de transmitância fixada com soluções de referência tendo transmitâncias absolutas de:				
	0,0	0,5	1,0	1,5	2,0
0,00	∞	1,74	0,87	0,58	0,44
0,10	10,9	1,82	0,99	0,68	0,52
0,20	6,9	1,97	1,15	0,8	0,63
0,30	5,8	2,16	1,33	0,96	0,75
0,40	5,4	2,5	1,6	1,13	0,97
0,50	5,5	2,75	1,8	1,37	1,1
0,60	5,8	3,1	2,2	1,65	1,3
0,70	6,2	3,6	2,6	1,98	1,6
0,80	6,9	4,2	3,0	2,4	2,0
0,90	7,7	5,0	3,6	2,9	2,4
1,00	8,7	5,8	4,3	3,5	2,9

Tabela 1 - Leitura de escala ótima na análise espectrofotométrica diferencial.

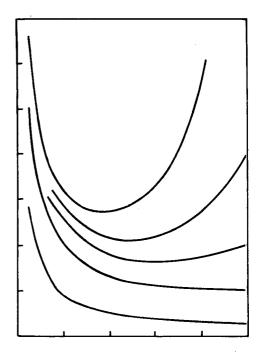
finidamente para padrões de referência progressivamente mais concentrados, sem o aparecimento de fatores adversos. Um rápido decréscimo na transmitância da luz ocorre para absorbâncias crescentes e o ruído no fototubo e no circuito de amplificação fixam um limite inferior para a corrente do fototubo ainda capaz de ser amplificada. Por outro lado, a ampliação da largura da fenda pode propiciar interferências de outras substâncias absorventes e desvios da lei de Beer.

PARTE EXPERIMENTAL

Foram usados reagentes da melhor qualidade disponível. Todas as soluções foram preparadas com água bidestilada e conservadas em recipientes de polietileno.

Todos os frascos volumétricos e pipetas foram rigorosamente calibrados.

Um gerador de ultrassom foi usado para destacar do cadinho o produto da fusão. Freqüência de operação, 20 kHz; banho de cavitação, 16 cm de diâmetro, 10 cm de altura; densidade de potência no banho de cavitação, 2 Wcm⁻².


Foi usada uma coluna trocadora de íons, de tipo padrão¹⁰, com um diâmetro de 14 mm e altura de 370 mm, constituída de duas camadas, a inferior (250 mm) com resina Amberlite IR-45 (Cl⁻; 30-50 malhas) e a superior com resina Amberlite IR-120 (H⁺; 30-50 malhas). Imediatamente antes do uso da coluna, as resinas foram lavadas com HCl 0,04 M. Ambas as resinas podem ser simultaneamente regeneradas mediante passagem de HCl 3 M através da coluna de duas camadas.

As medidas fotométricas foram feitas com Espectrofotômetro VSU-P (VEB Carl Zeiss JENA, RDA), com lâmpada de deutério, em comprimento de onda de 380 nm; célula de quartzo de 5 cm; e fenda de 0,85.

Processo. a) Preparação do padrão de sílica. Transferir 0,1000 g de dióxido de silício (quartzo, ~200 malhas) para um cadinho de platina. Adicionar 1,0 g de trióxido de boro e 0,1 g de carbonato de lítio; misturar intimamente com um curto bastão de vidro de extremidades arredondadas. Aquecer, primeiro, cuidadosamente com pequena chama até completa eliminação de alguma água. Cobrir o cadinho e, então, aquecer a cerca de 1000°C durante 30 minutos. Deixar o cadinho esfriar à temperatura ambiente.

Transferir cerca de 900 ml de HCl 0,04 M para um copo de 1000 ml. Introduzir o cadinho na solução contida no copo. Lavar a tampa do cadinho com um jato de água destilada. Colocar o cadinho no banho de cavitação do gerador de ultrassom; cerca de 1 minuto é geralmente suficiente para destacar o produto da fusão. Então, suspender o cadinho na solução, cobrir o copo e agitar magneticamente até completa dissolução do produto da fusão (cerca de 45 minutos). Remover e lavar o cadinho com água destilada. Transferir a solução para um frasco volumétrico de 2000 ml, lavar e diluir à marca com água destilada. Finalmente, transferir a solução para um recipiente de polietileno e adicionar 10 g de hidróxido de sódio. Esta solução contém o silício como silicato monômero.

 b) Análise da amostra. Fundir 0,1000 g da amostra com trióxido de boro e carbonato de lítio tal como na preparação do padrão de sílica.

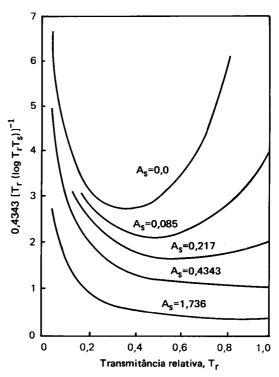


Fig. 2 -- Curvas de erro na espectrofotometria diferencial-

Preparar 1000 ml de HCl 0,04 M contendo 2 ml de H_2O_2 a 30%. Transferir cerca de 800 ml desta solução para um copo de 1000 ml e reservar o resto em um frasco lavador para uso posterior. Introduzir o cadinho na solução e destacar o produto da fusão com ultrassom. Então. adicionar 10 g de Amberlite IR-120 (H^+), suspender o cadinho na solução, cobrir o copo e agitar magneticamente até completa dissolução do produto da fusão. Remover e lavar o cadinho com um jato da solução de HCl- H_2O_2 reservada. Filtrar a solução para um frasco volumétrico de 1000 ml, lavar e diluir à marca com a mesma solução.

Passar 20, 25 ou 30 ml da solução, conforme o teor de sílica da amostra (50-67%, 40-50% e 34-42% de SiO₂, respectivamente) através da coluna trocadora de íons (previamente lavada com HCl 0,04 M) a uma velocidade de fluxo de 2 ml min⁻¹, recolhendo o efluente em uma cápsula de platina de 150 ml (ou copo interiormente recoberto com parafina) contendo 0,55 g de NaOH. Agitar cuidadosamente para dissolver o reagente sólido e adicionar 2 gotas de OsO₄ 0,01 M em H₂SO₄ 0,05 M. Lavar a coluna trocadora três vezes com porções de 10 ml de HCl 0,04 M e, por fim, com uma porção de 50 ml. Adicionar uma gota de solução de fenolftaleína e, então, cuidadosamente HCl 1 M até exatamente descorar a solução. Transferir a solução para um frasco volumétrico de 200 ml contendo 25 ml de solução de molibdato de amônio a 4%, 35 ml de ácido acético 2 M e 10 ml de acetato de sódio 1 M. Agitar a solução e adicionar água destilada sem contudo, completar até a marca. Remover o frasco para a sala do espectrofotômetro e deixar desenvolver o complexo amarelo.

Ao mesmo tempo, preparar como segue as duas soluções padrões. Primeiro, transferir 20 ml do padrão de sílica para a cápsula de platina; pode ser usada uma pipeta de vidro à base de borossilicato ou de qualidade similar. Adicionar uma gota de solução de fenolftaleína e neutralizar exatamente com HCl 1 M. Transferir a solução para um frasco volumétrico de 200 ml e desenvolver o complexo amarelo como no caso da amostra. Depois, medir 25 ml do padrão de sílica e tratar à parte semelhantemente. Levar ambas as soluções para a sala do espectrofotômetro.

Esperar uma hora para que se desenvolva apropriadamente o sistema corado em todas as soluções e que se igualizem as respectivas temperaturas. Então, completar todas as soluções com água destilada até a marca.

Finalmente, ajustar a escala de transmitância do espectrofotômetro para 100% com o primeiro padrão de referência. Sucessivamente, ler as absorbâncias do segundo padrão de referência e da amostra, sempre usando a mesma cubeta de quartzo de 5 cm.

DISCUSSÃO

Os estágios preliminares do processo acima descrito asseguram a completa conversão da sílica à necessária forma monômera, bem como a remoção de substâncias interferentes: fósforo (até 5%), titânio (até 5%) e zircônio (até 1%).

Na dissolução do produto da fusão em HCl 0,04 M contendo H_2O_2 , em contato com Amberlite IR-120 (H^{+}), algum titânio(IV), se presente, é convertido em peridroxicomplexo, que é fortemente fixado pela resina trocadora de cátions. A solução sendo ácida, a fixação de cátions atinge apenas as condições de equilíbrio. Note-se que concentrações de HCl inferiores a 0,04 M não impedem completamente a hidrólise (ou precipitação com fosfato) de titânio(IV), que ocasiona resultados baixos para a sílica; por outro lado, concentrações de HCl acima de 0,04 M dificultariam a fixação de fon fosfato na segunda camada da coluna trocadora.

A remoção das substâncias interferentes se completa mediante passagem de uma alíquota da solução através da coluna de duas camadas. Os cátions residuais são retidos na camada superior de Amberlite IR-120 (H⁺). Na camada inferior de Amberlite IR-45 (Cl⁻) dá-se a retenção de íon fosfato. Esta segunda camada, com a coluna operando a uma razão de fluxo de 2 ml min⁻¹, é capaz de reter ácido fosfórico equivalente a 0,5 mg de P₂O₅ presente em 100 ml de HCl 0,04 M.

A solução efluente é recebida em hidróxido de sódio para uma completa despolimerização da sílica. A adição de OsO₄ à solução alcalina, enquanto a percolação prossegue, garante a decomposição total do peróxido de hidrogênio antes do estágio da coluna, assim evitando interferências do mesmo na reação subsequente entre ácido monossilícico e molibdato.

O desenvolvimento do ácido molibdossilícico ocorre em pH\sigma3,9 obtido por tampão de ácido acético-acetato de sódio. Depois de uma hora todo complexo amarelo está presente como ácido-α e, então, a absorbância da solução se mantém constante conforme foi experimentalmente observado. Também foi observado uma estrita obediência à lei de Beer no caso de soluções de ácido α-molibdossilícico obtidas com 20, 30 e 40 ml do padrão de sílica. As soluções são estáveis e reprodutíveis, mas as suas absorbâncias dependem algo da temperatura. Foi observado um coeficiente de temperatura de cerca de 0.1% por grau centígrado em dois ensaios realizados com 20 e 30 ml do padrão de sílica. O efeito de temperatura no processo descrito é compensado com as medidas das absorbâncias da amostra e dos padrões a uma mesma temperatura. O comprimento de onda de 380 nm, escolhido para as leituras fotométricas, se situa na região em que a absortividade do ácido-α é pouco afetada por variações nas concentrações dos íons hidrogênio e molibdato. O uso de uma única cubeta de 5 cm garante um percurso óptico constante.

A solução padrão recomendada para ajustar em 100% a escala de transmitância foi escolhida de modo a ter-se um valor da absorbância absoluta algo acima de 1,000.

Como o erro de análise relativo, para um dado padrão de referência, diminui à medida que a absorbância relativa da amostra tende para zero, o volume da solução da amostra a ser tomado foi estabelecido conforme o teor de sílica na amostra: 20 ml para amostras com 50-67% de SiO₂, 25 ml para amostras com 40-50% de SiO₂ e 30 ml para amostras com 34-42% de SiO₂. Então, as absorbâncias relativas medidas para soluções desconhecidas não vão além de cerca de 0,300. A incerteza na leitura da escala de transmitância a 380 nm foi observada como sendo de 0,2%; este valor foi tomado como duas vezes o desvio padrão da transmitância obtido mediante repetidas medidas para uma única solução, conforme critério recomendado por Hiskey⁸. Segue-se que o erro de análise relativo causado pelo erro fotométrico deve ser, teoricamente, inferior a 0,133% (Tab. 1).

RESULTADOS E CONCLUSÕES

O processo aqui apresentado, para a determinação de sílica em silicatos por espectrofotometria diferencial como ácido α-molibdossilícico, foi ensaiado com análises de amostras de feldspato sódico contendo 65,49% de SiO₂. Os resultados apresentados na Tab. 2 foram obtidos em ensaios com 20 ml de soluções da amostra. Os erros relativos são todos

Ensaio	SiO ₂ achado (%) Erro	relativo (%	
1	65,56	+0,11	
2	65,59	+0,15	
3	65,33	-0,24	
4	65,46	-0,05	
5	65,63	+0,21	
6	65,43	-0,10	
_	<u> </u>	•	

Coeficiênte de variação: 0,17%

Tab. 2 --- Resultados obtidos em amostras de feldspato sódico*

inferiores a 0,25%, com um coeficiente de variação de 0,17%. Presumivelmente, o processo poderia ser algo melhorado mediante uso de um padrão de referência mais concentrado, uso de uma solução da amostra mais próxima da absorbância relativa zero e tomadas de alíquotas da amostra por pesagem.

Os estágios preliminares do processo analítico asseguram a eliminação de substâncias interferentes, tais como fósforo, titânio e zircônio frequentemente encontrados em baixos níveis em rochas e silicatos minerais. Em conclusão, o processo descrito é próprio para a determinação de sílica em silicatos contendo fósforo, titânio e zircônio (até os níveis antes indicados) com boa precisão e exatidão. A análise total pode ser efetuada em menos de cinco horas.

AGRADECIMENTO

Os autores agradecem a ajuda recebida da Pró-Reitoria de Pós-Graduação e Pesquisa da Universidade Federal do Rio Grande do Sul, através do Plano Especial de Química, e do Conselho Nacional de Desenvolvimento Científico e Tecnológico.

NOTA TÉCNICA

SISTEMA PARA DETERMINAÇÃO SEMI-MICRO DE DENSIDADES A TEMPERATURAS VARIÁVEIS

Rosane A.S. San Gil, R. Bicca de Alencastro e Adelina Costa Neto

Instituto de Química da Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ. – Brasil
(Recebido em 02/12/80)

Medidas de densidade são geralmente problemáticas quando se dispõe de pequenos volumes de amostra. O problema se agrava quando há necessidade de se efetuarem medidas a temperaturas diferentes daquelas comumente tabeladas. Tivemos, em nosso laboratório, necessidade de medir a densidade de volumes reduzidos (em torno de 5ml) de líquido puros e de soluções a diferentes temperaturas, o que eliminava o uso de picnômetros, calibrados normalmente para 20 ou 25.º C. A presente nota descreve um sistema, de construção simples e pouco dispendiosa que, utilizando equipamentos comuns de laboratório, resolveu sa-

satisfatoriamente o problema.

Baseada no princípio da balança de Westphal (Farrington, 1949), foi projetada e construída uma aparelhagem composta de uma peça de vidro (Figura 1), onde é colocado o líquido cuja densidade se pretende medir, e de uma peça de aço inoxidável (Figura 2), que funciona como mergulhador. A peça de vidro dispõe de entrada e saída para água termostatizada (podendo-se eventualmente usar qualquer outro fluído), e capacidade para 3 a 5ml de amostra; o mergulhador é uma peça cilíndrica, cujas dimensões foram calculadas para que o volume de líquido deslocado fosse 0,5ml.

^{*}A amostra padrão continha 65,49% de SiO₂ (valor usado na avaliação dos erros relativos e do coeficiente de variação).

J. D. M. Strickland, J. Am. Chem. Soc., 74, 862, 868, 872 (1952).
 V. W. Truesdale, C. J. Smith, Analyst, 100, 203, 797 (1975); 102, 73 (1977); 104, 897 (1979).

³H. E. Garrett e A. J. Walker, Analyst, 89, 642 (1964).

⁴A. Ringbom, P. E. Ahlers e S. Sutonen, Anal. Chim. Acta, 20, 78 (1959).

⁵L. D. Dolaberidze, D. K. Kamkamidze e P. A. Tauglikh, Trudy kauk. Inst. min. Syr'ya, 8(10), 151 (1970).

⁶O. A. Ohlweiler, J. O. Meditsch, S. Silva e J. H. Oderich, Anal. Chim. Acta, 69, 228 (1974).

⁷R. Bastian, Anal. Chem., 21, 972 (1949).

⁸C. F. Hiskey, Anal. Chem., 21, 1440 (1949).

⁹R. Bastian, R. Weberley e L. Palilla, Anal. Chim., 22, 160 (1950).

¹⁰O. Samuelson, Ion Exchange Separations in Analytical Chemistry, Willey, N. York, 1963, pag. 165.