SULFITOS DUPLOS CONTENDO COBRE (I) E UM METAL DE TRANSIÇÃO M(II) TIPO Cu<sub>2</sub>SO<sub>3</sub>.M(II)SO<sub>3</sub>.2H<sub>2</sub>O [M(II) = Cu(II), Fe(II), Mn(II) E Cd(II)]: PREPARAÇÃO E SELETIVIDADE NA INCORPORAÇÃO DE M(II)

Luciana Almeida Silva, Suzimone de Jesus Correa, Claudia Rocha Martins e Jailson B. de Andrade Instituto de Ouímica - UFBA - Campus de Ondina - 40170-290 - Salvador - BA

Recebido em 5/2/97; aceito em 26/6/97

DOUBLE SULFITE CONTAINING COPPER (I) AND A METAL TRANSITION M(II) LIKE  $Cu_2SO_3.M(II)SO_3.2H_2O$  [M(II) = Cu(II), Fe(II), Mn(II) and Cd(II)]: SYNTHESIS AND SELECTIVITY IN M(II) INCORPORATION. The metal-catalyzed autooxidation of S(IV) has been studied for more than a century without a consensus being obtained as to reaction rates, rate laws or mechanisms. The main objective in this work was to explore the reaction between Cu(II) and  $SO_2$  in the presence of M(II), paying special attention to the formation of double sulfites like  $Cu_2SO_3.M(II)SO_3.2H_2O$ . The two principal aspects studied were: i) a new way to prepare double sulfites with high purity degree and the selectivity in the M(II) incorporation during the salt formation.

Keywords: Chevreul's salt; sulfite; S(IV) autooxidation.

## INTRODUÇÃO

A autooxidação do S(IV) catalisada por metais tem sido estudada por mais de um século sem que exista um consenso sobre as velocidades de reação e seus mecanismos. Nos últimos 20 anos tem crescido o interesse no estudo das reações entre S(IV) e metais de transição em fase aquosa, pois a oxidação do  $SO_2$  em fase líquida é uma das principais rotas no ciclo bioquímico do enxofre e da produção de acidez para a atmosfera. Neste sentido, os sulfitos duplos contendo o íon Cu(I) e metais de transição d podem ser utilizados como compostos modelos para o entendimento de reações envolvendo o S(IV).

O primeiro sulfito duplo envolvendo metal de transição foi preparado por Chevreul em 1812<sup>1</sup>. O Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O, mais conhecido como Sal de Chevreul, contém dois centros metálicos de valência mista, Cu(I) e Cu(II). Sua estrutura cristalina foi determinada em 1965 por Kierkgaard e Nyberg<sup>2</sup>, utilizando técnica de difração de raios-X. Esta foi descrita em termos de coordenação de poliedros (pirâmides trigonais, SO<sub>3</sub>; tetraedros, Cu(I)O<sub>3</sub>S e octaedros, Cu(II)O<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>). O sulfito duplo de Cu(I) e Cu(II) apresenta estrutura monoclínica sendo a coordenação em torno do Cu(I) um tetraedro distorcido, formado por três átomos de oxigênio e um átomo de enxofre de quatro grupos sulfito diferentes; enquanto que o arranjo em torno do Cu(II) é um octaedro distorcido, formado por dois átomos de oxigênio provenientes da água e por quatro átomos de oxigênio provenientes de diferentes grupos sulfito. Os íons sulfito, por sua vez, são pirâmides trigonais cujo ângulo O-S-O é de 106,9°. Os poliedros são ligados entre si para formar a estrutura tridimensional de modo que as pirâmides de SO3 são ligadas a dois octaedros [Cu(II)O<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] e a um tetraedro [Cu(I)O<sub>3</sub>S] através do átomo de oxigênio e a outro tetraedro através do átomo de enxofre2. A célula unitária resultante da junção dos poliedros pertence ao grupo espacial P2<sub>1/n</sub>

Posterior ao sal de Chevreul, foram preparados e caracterizados vários sulfitos simples de metais de transição - Zn, Ni, Ag, Pd, Co e Cd - e sulfitos duplos com metais de transição e um metal alcalino ou o íon amônio3-7. Várias tentativas foram feitas para preparar sulfitos duplos contendo Cu(I) e um íon metálico divalente da primeira série de transição utilizando

métodos da literatura para a preparação do sal de Chevreul, porém resultaram na formação de uma mistura de sulfitos, incluindo o sal de Chevreul<sup>8</sup>.

Em 1981, Cipriano<sup>9</sup> sintetizou e caracterizou um novo sulfito duplo de Cu(I) e Fe(II), bem como estabeleceu as melhores condições de síntese deste composto. O sal foi preparado com diferentes razões de concentrações iniciais de ferro e cobre em solução (razões Fe:Cu iguais a 1, 6, 8, 10, 12, 15, 16, 17 e 18). As análises demonstraram que a substituição do Cu(II) no sal de Chevreul pelo Fe(II) realmente ocorre, porém é pouco efetiva quando a razão das concentrações de ferro e cobre na solução inicial é igual a 1. A medida que a razão Fe:Cu cresce, a incorporação de Fe(II) em substituição ao Cu(II) aumenta progressivamente até atingir um patamar (razão Fe:Cu igual a 12), onde a substituição do Cu(II) pelo Fe(II) é completa.

O composto castanho amarelado obtido por Cipriano<sup>9</sup> foi caracterizado através de análise de difração de raios-X (método de pó), espectrometria na região do infravermelho e espectrofotometria de absorção atômica dos metais. Os resultados das análises demonstraram que o novo sulfito duplo de Cu(I) e Fe(II) apresenta fórmula química Cu<sub>2</sub>SO<sub>3</sub>.FeSO<sub>3</sub>.2H<sub>2</sub>O e é isomorfo do Sal de Chevreul, Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O.

Miguel e col. <sup>10</sup>, em 1984, prepararam dois novos sulfitos duplos, Cu<sub>2</sub>SO<sub>3</sub>.MnSO<sub>3</sub>.2H<sub>2</sub>O e Cu<sub>2</sub>SO<sub>3</sub>.CdSO<sub>3</sub>.2H<sub>2</sub>O, sendo que o último foi o primeiro sulfito duplo obtido que contém um metal da segunda série de transição - 4d - (Cd). A escolha dos metais, cádmio e manganês, deu-se em função destes apresentarem um estado de oxidação +2 estável e raios atômicos próximos ao do íon cobre(II).

Os novos sulfitos duplos de metais de transição foram caracterizados através de análises de cobre, manganês e cádmio por espectrofotometria de absorção atômica, espectrometria de absorção na região do infravermelho e por difração de raios-X (método de pó)<sup>10</sup>. Os resultados das análises confirmaram as fórmulas químicas dos novos sulfitos duplos, bem como o isomorfismo com o Sal de Chevreul.

Em 1986, Cox e col. descreveram um modelo experimental sobre a estabilidade dos sulfitos no material particulado atmosférico. Nesse estudo, o sulfito duplo de cobre de valência mista, Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O, Sal de Chevreul, foi usado como modelo para caracterizar a estabilidade de sulfitos em superfícies de partículas expostas ao ar. O estudo foi desenvolvido através de monitoramento, por mais de 600 dias.

<jailsong@ufba.br>

das reações de superfícies, incluindo possíveis oxidações de S(IV) a S(VI) e Cu(I) a Cu(II), por espectroscopia fotoeletrônica de raio-X (XPS).

Vários modelos de reações de oxidação foram desenvolvidos<sup>11</sup> e posteriormente comparados com o dados experimentais; dentre eles, três reações foram inicialmente consideradas como possibilidades para a reação de Cu(I) do Sal de Chevreul exposto ao ar com O<sub>2</sub>.

Reação 1

Reação 3

 $O_2 + Cu_2SO_3.CuSO_3.2H_2O \rightarrow CuSO_3 + CuSO_4 + CuO + 2H_2O$ Reação 2

 $1/2\mathrm{O}_2 + \mathrm{Cu}_2\mathrm{SO}_3.\mathrm{Cu}\mathrm{SO}_3.2\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{Cu}\mathrm{SO}_3 + 2\mathrm{Cu}\mathrm{O} + \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O}$ 

 $1/2O_2 + Cu_2SO_3.CuSO_3.2H_2O \rightarrow 2CuSO_3 + CuO + 2H_2O$ 

Os dados obtidos através do monitoramento por XPS<sup>11</sup> são compatíveis com os valores calculados para as reações 1 e 3. Entretanto, a reação 1 produz CuSO<sub>4</sub> e o íon SO<sub>4</sub><sup>2-</sup> não foi detectado no produto final, deste modo a reação mais provável de ocorrer é a reação 3. A oxidação de sulfito a sulfato observada durante o tempo de monitoramento deu-se em baixa escala, sugerindo que o sulfito pode ter um tempo de residência longo na atmosfera<sup>11</sup>.

Atualmente, pouco se conhece sobre o mecanismo de formação dos sulfitos duplos, bem como sobre o papel dos íons metálicos na autooxidação do S(IV) e na sua incorporação nos sais. Neste sentido, o principal objetivo deste trabalho foi explorar as reações entre SO<sub>2</sub> e Cu(II) e SO<sub>2</sub>, Cu(II) e M(II), sendo M(II) = Fe(II), Mn(II) e Cd(II), para estabelecer uma base firme que permita o estudo futuro da autooxidação do S(IV) catalisada por metais, bem como avaliar a seletividade na formação de sulfitos duplos de Cu(I) e outros metais de transição utilizando soluções-mãe contendo três diferentes cátions. Adicionalmente, propõe-se dois novos procedimentos para a preparação do Sal de Chevreul, com o propósito de obtê-lo com grau de pureza elevado.

### PARTE EXPERIMENTAL

## Preparação do Sal de Chevreul (Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O)

A adição de dióxido de enxofre é feita através de um borbulhador de ar com poro fino até pH ~1,0, em 100mL de solução aquosa contendo 4g de sulfato de Cu(II) pentaidratado no interior de um erlenmeyer de 250mL (Figura 1a). A solução é aquecida a 78 ± 2°C, em uma placa de aquecimento com agitador magnético, para manter a homogeneidade do sistema. Quando a temperatura atinge o valor esperado, o fluxo de gás é interrompido, efetuando-se então a adição lenta da solução de Na<sub>2</sub>CO<sub>3</sub> 20% (m/v) através de um conta gotas, sob agitação e temperatura constantes, até pH 3,0 ±.0,5. Nesse ponto, ocorre a precipitação de um composto cristalino marrom-avermelhado que é imediatamente filtrado a quente para evitar a precipitação de outros compostos a temperaturas inferiores a 75°C. Em seguida o precipitado é lavado com água deionizada quente e etanol e seco ao ar.

# Preparação dos Sulfitos Duplos Cu<sub>2</sub>SO<sub>3</sub>.MSO<sub>3</sub>.2H<sub>2</sub>O, M = Mn, Fe, Cd

Os sais foram preparados segundo o método descrito anteriormente, adicionando-se a cada uma das soluções iniciais, além de 2,0g de sulfato de cobre, sulfato de M(II) em excesso: Cu<sub>2</sub>SO<sub>3</sub>.MnSO<sub>3</sub>.2H<sub>2</sub>O (12,4g de MnSO<sub>4</sub>.H<sub>2</sub>O); Cu<sub>2</sub>SO<sub>3</sub>.FeSO<sub>3</sub>.

 $2H_2O$  (24,4g de FeSO<sub>4</sub>.7 $H_2O$ ) e  $Cu_2SO_3$ .CdSO<sub>3</sub>.2 $H_2O$  (20,4g de CdSO<sub>4</sub>.2/3 $H_2O$ ).

## Novas Rotas de Preparação do Sal de Chevreul

#### Adição de Nitrogênio

Foi utilizado o mesmo procedimento da rota tradicional de síntese, exceto a adição de  $Na_2CO_3$  20% (m/v) à solução. Para elevar o pH a adição do álcali foi substituída pelo borbulhamento de nitrogênio à solução saturada de  $SO_2$ , (Figura 1b) o qual remove o excesso deste, aumentando o pH do sistema e, consequentemente, provocando a precipitação do sulfito.

### Vácuo e Ultra-som

Nesse procedimento foi utilizado um balão de vidro de três vias. Em uma das vias foi conectado um borbulhador de gás com poro fino, através do qual satura-se a solução com SO2 até pH ~1.0. Após a saturação da solução com o gás, inicia-se o aquecimento em um banho termostatizado até 78 ± 2°C. A temperatura é continuamente medida por um termômetro conectado em uma das vias do balão. Ouando a solução atinge a temperatura esperada, o balão é transferido para um banho de ultra-som, vedado e conectado a uma bomba de vácuo, de modo a reduzir a pressão no seu interior e retirar o excesso de SO<sub>2</sub> presente no meio. Ao banho de ultra-som é adaptada uma serpentina para manter a temperatura do sistema (Figura 1c). Após alguns minutos, ocorre a precipitação do composto marrom-avermelhado que é filtrado a quente, lavado diversas vezes exaustivamente com água deionizada e álcool e seco ao ar. Para evitar danos à bomba de vácuo, causados pelo SO<sub>2</sub>, deve ser adaptado na entrada desta um porta-filtro de 42 mm de diâmetro, contendo filtros de celulose impregnados com NaOH ou Na<sub>2</sub>CO<sub>3.</sub>

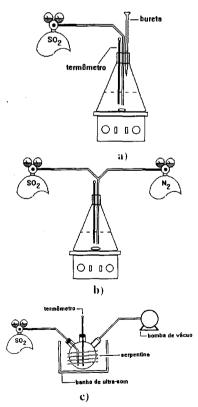



Figura 1. Esquemas de sistemas de preparação do Sal de Chevreul por diferentes métodos: a) rota tradicional; b) adição de Nitrogênio; c) utilização de um sistema de vácuo e ultra-som.

# Preparação dos Sulfitos Duplos a Partir de Misturas Contendo Mais de Um Cátion M(II)

Foi utilizado o mesmo procedimento do método tradicional de síntese, partindo-se de soluções contendo sulfato de cobre e sulfato de mais dois metais: i) Mn(II), Cd(II); ii) Cd(II), Fe(II); iii) Fe(II), Mn(II)

## CARACTERIZAÇÃO DOS SAIS

## Espectroscopia no Infravermelho

O íon sulfato coordena-se apenas através do oxigênio, entretanto, o sulfito pode coordenar-se aos íons metálicos através do enxofre, do oxigênio ou ambos (Figura 2)<sup>5,9,10,12</sup>. Deste modo, através da frequência de estiramento da ligação S-O é possível obter informações sobre a configuração dos complexos com S(IV) pois os deslocamentos nessas frequências (S-O) dependem do tipo de coordenação<sup>5</sup>. Deslocamentos para frequências mais altas estão relacionadas com ligações metalenxofre, ao passo que deslocamentos para frequências mais baixas estão associadas a ligação metal-oxigênio<sup>5</sup>.

Figura 2. Diferentes possibilidades de coordenação entre um íon metálico e o íon sulfito.

O íon sulfito livre apresenta simetria C<sub>3v</sub> e quatro modos ativos fundamentais no infravermelho: v1 (estiramento simétrico), v<sub>2</sub> (deformação simétrica), v<sub>3</sub> (estiramento assimétrico), v<sub>4</sub> (deformação assimétrica). Como as ligações Na-O no Na<sub>2</sub>SO<sub>3</sub> são fracas, este composto pode ser utilizado como padrão para comparação com o espectro de outros sulfitos. O espectro no infravermelho do sólido apresentou as seguintes frequências em cm<sup>-1</sup>:  $v_1 = 1010$  (médio);  $v_2 = 633$  (forte);  $v_3 = 961$  (forte) e  $v_4 = 496$  (forte)<sup>13</sup>. Os dois modos assimétricos são duplamente degenerados. No caso da ligação metal-íon sulfito ocorrer através do enxofre a simetria C<sub>3v</sub> será essencialmente preservada (Figura 2) e a ordem de ligação será aumentada, mudando a frequência de estiramento para frequências mais altas quando comparadas com o íon sulfito livre. No caso da ligação metal-íon sulfito ocorrer através do oxigênio (Figura 2) a simetria será diminuída para Cs, C3 ou C1 e é esperado um decréscimo na ordem de ligação e, consequentemente, um decréscimo na frequência de estiramento. Nestes casos, o número de bandas no infravermelho é aumentado para seis devido à remoção da degenerescência v<sub>3</sub> e v<sub>4</sub>.

De acordo com Nyberg e Larsson<sup>5</sup>, os compostos, cujas estruturas envolvem ligações do tipo metal-íon sulfito, podem ser classificados em três grupos: I) compostos sem coordenação através do enxofre (p. ex. Na<sub>2</sub>SO<sub>3</sub>); II) compostos com coordenação através do enxofre e oxigênio (p. ex. Cu<sub>2</sub>SO<sub>3</sub>. CuSO<sub>3</sub>.2H<sub>2</sub>O); e III) compostos com coordenação dominante através do enxofre (p. ex. Co(en)<sub>2</sub>SO<sub>3</sub>NCS.2H<sub>2</sub>O). Os compostos objeto do presente estudo pertencem ao grupo II. Isto é

evidenciado no espectro no infravermelho através da presença de uma banda forte acima de 975 cm<sup>-1</sup> associada à deformação axial na ligação S-O, indicando coordenação através do átomo de enxofre e de uma banda forte abaixo de 975 cm<sup>-1</sup> indicativa de coordenação através do átomo de oxigênio. Essas bandas (Figura 3) são características dos sulfitos duplos<sup>5,9,10,14</sup> permitindo assim uma caracterização rápida dos sais. Neste trabalho foi utilizado um espectrômetro FTIR Jasco, modelo VALOR III, com varredura de 4000 - 400 cm<sup>-1</sup>. As medidas foram realizadas em pastilhas de KBr, 0,5 % m/m.

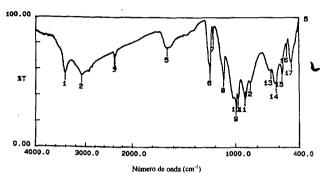



Figura 3. Espectro de infravermelho do Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O<sub>3</sub>

### Determinação dos Metais

A verificação da incorporação de sódio nos compostos preparados foi feita através da determinação do metal por fotometria de chama, em 589nm, utilizando-se um equipamento CELM, modelo FC 280.

Os teores de Cu, Fe, Mn e Cd nos sais foram determinados utilizando-se um Espectrômetro de Emissão Atômica por Plasma de Argônio Indutivamente Acoplado (ICP/AES), ARL, modelo 3410, equipado com mini-tocha. Os padrões e amostras foram preparados em solução de HCl 1%.

### RESULTADOS E DISCUSSÃO

Na precipitação do Sal de Chevreul através da adição de álcali ocorre um aumento excessivo do pH no local em que a gota atinge a solução. Isto provoca a incorporação do cátion do carbonato, ou base, (geralmente Na<sup>+</sup>, K<sup>+</sup> ou NH<sub>4</sub><sup>+</sup>) na estrutura do sulfito como impureza. No caso específico da utilização de compostos cujo cátion é o Na<sup>+</sup> pode ocorrer, inclusive, a substituição de Cu<sup>+</sup> da rede cristalina pelo sódio pois ambos tem carga +1 e raios iônicos próximos (Na<sup>+</sup> = 0,97Å e Cu<sup>+</sup> = 0,96Å). Isto dificulta a determinação da estrutura cristalina e o estudo das propriedades ópticas e magnéticas dos sais.

Para evitar a incorporação de cátions estranhos na estrutura cristalina do sal e facilitar a obtenção de monocristais, o excesso de SO<sub>2</sub> foi retirado do sistema (provocando o aumento do pH) através de dois diferentes procedimentos: i) pela redução de pressão aliada à sonicação em banho de ultra-som na temperatura de 60°C; ii) pelo borbulhamento de nitrogênio à solução saturada de SO<sub>2</sub>. O precipitado marrom-avermelhado obtido através de ambos os procedimentos, foi caracterizado de maneira idêntica ao Sal de Chevreul preparado pela rota usual<sup>1,9,11</sup>. O teor calculado de cobre total no Cu<sub>2</sub>SO<sub>3</sub>. CuSO<sub>3</sub>.2H<sub>2</sub>O é 49,3%. Os valores de concentração de cobre total determinados nos sais preparados através das rotas i e ii foram, respectivamente, 49,5% e 49,3%, revelando uma boa concordância com valor calculado.

Os espectros na região do infravermelho (IV) dos sais preparados são semelhantes ao do Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O e como pode ser comprovado na Tabela 1 as bandas de interesse tem número de onda e intensidade idênticas. Apesar dos espectros no IV confirmarem que os sais preparados são Cu<sub>2</sub>SO<sub>3</sub>.

Tabela 1. Bandas ativas no infravermelho (cm<sup>-1</sup>) do Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O obtido por diferentes métodos de preparação.

| Cu <sub>2</sub> SO <sub>3</sub> .CuSO <sub>3</sub> .2H <sub>2</sub> O | Modos Ativos do SO <sub>3</sub> =            |                                    |                                    |
|-----------------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------------------|
|                                                                       | $v_1 \in v_3 \text{ (cm}^{-1})$              | v <sub>2</sub> (cm <sup>-1</sup> ) | v <sub>4</sub> (cm <sup>-1</sup> ) |
| RT                                                                    | 1118,85(m); 1024,33(m); 993,49(F); 974,17(F) | 620,19(m)                          | 474,55(m)                          |
| NR1                                                                   | 1116,92(m); 1024,33(F); 993,46(F); 974,17(F) | 620,19(m)                          | 474,55(m)                          |
| NR2                                                                   | 1118,85(m); 1024,33(m); 993,49(F); 974,17(F) | 620,19(m)                          | 473,58(m)                          |
| Nyberg & Larson <sup>5</sup>                                          | 1025(m); 1008(m); 977(m); 912(m)             | 636(m)                             | 480(f)                             |
| Conklin & Hoffmann <sup>14</sup>                                      | 1113(m); 1025(F); 997(F); 973(F)             | 620(m)                             | 460(f)                             |

RT - Rota Tradicional

NR1 - Nova Rota (Vácuo/ultra-som)

NR2 - Nova Rota (Borbulhamento com Nitrogênio)

CuSO<sub>3</sub>.2H<sub>2</sub>O, a contaminação do sal pelo íon Na<sup>+</sup>, quando da utilização de Na<sub>2</sub>CO<sub>3</sub>, foi observada através da determinação do metal por fotometria de chama, revelando uma incorporação de Na<sup>+</sup> da ordem de 0,08%. Isto demonstra que os novos procedimentos de preparação, propostos neste trabalho, permitem a preparação de sais com pureza elevada, enquanto que no procedimento descrito anteriormente na literatura há contaminação por incorporação de Na<sup>+</sup>.

#### **SELETIVIDADE**

Cobre(II) e Cobre(I) apresentam diferentes características com relação ao caráter das ligações químicas. O Cu(I) apresenta uma tendência à polarizabilidade maior do que o Cu(II), sendo classificado como metal classe b, ou seja um ácido macio. Entretanto, o Cu(II) apesar de classificado como classe b pode, a depender das circunstâncias, apresentar características de ambas classes<sup>15</sup>. A estrutura do Sal de Chevreul<sup>2,10</sup> indica que estes são sais de centro não simétrico: o Cu(I) é ligado ao SO<sub>3</sub><sup>=</sup> através de átomos de oxigênio e enxofre tetraedricamente, enquanto que o Cu(II) se liga somente através de átomos de oxigênio em ambiente octaédrico.

Na preparação de sulfitos duplos isomorfos com o Sal de Chevreul,  $Cu_2SO_3$ . $MSO_3$ . $2H_2O$  (M = Fe(II), Mn (II) ou Cd(II)) é necessário um excesso de M(II) com relação ao Cu(II) para que não ocorra a precipitação do Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O. Devese observar que o caráter macio do Cu(I) resulta em uma tendência a complexar, nesse tipo de compostos, com o enxofre que apresenta habilidades eletron-doadora e polarizabilidade maiores do que o oxigênio, sendo também classificado como base macia<sup>15</sup>. Entretanto, nesse caso, para o Cu(II), que pode ter caráter duro ou macio, predomina o caráter duro resultando na ligação através do oxigênio. Deste modo, considerando os cátions M(II) utilizados neste estudo, a ordem crescente de raios iônicos é: Cu(II) < Fe(II) < Mn (II) < Cd(II), o que corresponde à ordem decrescente de "dureza". Logo, devido à ligação de M(II) com o íon sulfito ser através do oxigênio, é previsto preferência uma pela formação  $Cu_2SO_3$ . $CuSO_3$ . $2H_2O$ .

Na avaliação da seletividade da reação utilizou-se soluçõesmãe contendo sulfatos de:

- i) Cu(II) e Mn(II);
- ii) Cu(II) e Fe(II);
- iii) Cu(II) e Cd(II);
- iv) Cu(II), Cd(II), Mn(II);
- v) Cu(II), Fe(II), Cd(II);e
- vi) Cu(II), Fe(II), Mn(II).

Nos três primeiros casos os compostos obtidos corresponderam aos respectivos sulfitos duplos; i) Cu<sub>2</sub>SO<sub>3</sub>.MnSO<sub>3</sub>.2H<sub>2</sub>O; ii) Cu<sub>2</sub>SO<sub>3</sub>.FeSO<sub>3</sub>.2H<sub>2</sub>O; e iii) Cu<sub>2</sub>SO<sub>3</sub>.CdSO<sub>3</sub>.2H<sub>2</sub>O, consequência da substituição total do Cu(II) pelo M(II) correspondente. Isto foi comprovado através da determinação dos teores dos cátions metálicos onde existe uma boa concordância entre o valor calculado e o experimental (Tabela 2). Também, os espectros na

Tabela 2. Concentração de M(II) (%) nos sulfitos duplos.

| Sulfito Duplo                                                                                                                                  | Metal                           | Calc. (%)            | Exp. (%)             |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|----------------------|
| Cu <sub>2</sub> SO <sub>3</sub> .CuSO <sub>3</sub> .2H <sub>2</sub> O<br>Cu <sub>2</sub> SO <sub>3</sub> .FeSO <sub>3</sub> .2H <sub>2</sub> O | Cu <sub>total</sub><br>Cu<br>Fe | 49,3<br>33,5<br>14,7 | 48,8<br>33,2<br>14,2 |
| Cu <sub>2</sub> SO <sub>3</sub> .MnSO <sub>3</sub> .2H <sub>2</sub> O                                                                          | Cu                              | 33,6                 | 33,5                 |
|                                                                                                                                                | Mn                              | 14,5                 | 14,7                 |
| Cu <sub>2</sub> SO <sub>3</sub> .CdSO <sub>3</sub> .2H <sub>2</sub> O                                                                          | Cu                              | 30,2                 | 29,5                 |
|                                                                                                                                                | Cd                              | 25,9                 | 24,9                 |

região do infravermelho (IV) dos sais preparados são consistentes com os da literatura para os respectivos sais do tipo Cu<sub>2</sub>SO<sub>3</sub>.MSO<sub>3</sub>.2H<sub>2</sub>O<sup>5,9,10,12</sup> e como pode ser comprovado na Tabela 3 as bandas de interesse tem número de onda e intensidade semelhantes às do Cu<sub>2</sub>SO<sub>3</sub>.CuSO<sub>3</sub>.2H<sub>2</sub>O, confirmando que os sais são isomorfos com o Sal de Chevreul. Neste caso, o Cu(II) é reduzido a Cu(I), durante a oxidação do S(IV) e o sal Cu<sub>2</sub>SO<sub>3</sub>.MSO<sub>3</sub>.2H<sub>2</sub>O é formado através da incorporação de M(II).

Nos três últimos casos, iv, v e vi, os sais formados corresponderam a misturas de sulfitos duplos do tipo Cu<sub>2</sub>SO<sub>3</sub>. MSO<sub>3</sub>.2H<sub>2</sub>O. A partir dos teores de Cd, Mn, Fe e Cu, nos compostos obtidos (Tabela 4) foi possível determinar a fração de cada sal na mistura (Tabela 5). Em todos os casos o sulfito duplo obtido em maior quantidade foi o correspondente ao M(II) de maior raio atômico. Nas misturas que continham Cd  $(Cd^{2+} = 0.97\text{Å})$ , iv e v, o  $Cu_2SO_3.CdSO_3.2H_2O$  correspondeu a, respectivamente, 81,5% e 88,9% do total dos sais precipitados. Na mistura vi, o M(II) de maior raio atômico foi o Mn  $(Mn^{2+} = 0.80 \text{ Å}) \text{ e, neste caso, o } Cu_2SO_3.MnSO_3.2H_2O \text{ obtido}$ correspondeu a 62% dos sais precipitados. Em todos os três casos o sulfito obtido em menor proporção foi o Cu<sub>2</sub>SO<sub>3</sub>. CuSO<sub>3</sub>.2H<sub>2</sub>O (Tabela 5) e o Cu(II) foi o cátion de menor raio atômico ( $Cu^{2+} = 0.72\text{Å}$ ) presente nas misturas reagentes. Essas observações são reforçadas pela avaliação das bandas características no infravermelho (Tabela 3), podendo-se observar que existe uma grande semelhança entre as bandas de interesse correspondentes ao sulfito Cu<sub>2</sub>SO<sub>3</sub>.MSO<sub>3</sub>.2H<sub>2</sub>O puro e a mistura de sais onde este é majoritário.

Nos estudos contendo três diferentes cátions em solução ocorreu a substituição prioritária pelo cátion mais "macio", não existindo preferência pela ordem crescente de dureza, como o esperado, devido à ligação de M(II) ao fon sulfito ser através do oxigênio. Considerando os valores de volume das células unitárias dos sulfitos duplos<sup>8,10,16</sup> de fórmula Cu<sub>2</sub>SO<sub>3</sub>.MSO<sub>3</sub>. 2H<sub>2</sub>O e relacionando-as com os valores dos raios atômicos dos respectivos cátions M(II) observa-se um comportamento linear (Figura 4) com um coeficiente de correlação R<sup>2</sup> = 0,92, indicativo de que a célula unitária dos sulfitos duplos expandese proporcionalmente com o raio atômico do fon metálico M(II). Este fato, poderá justificar a substituição do Cu(II) pelo cátion mais "macio".

Tabela 3. Bandas ativas no infravermelho (cm<sup>-1</sup>) dos sulfitos duplos do tipo Cu<sub>2</sub>SO<sub>3</sub>.M(II)SO<sub>3</sub>.2H<sub>2</sub>O e dos sais das misturas ternárias obtidas a partir de sulfato cúprico e sulfato de dois outros metais M(II).

| Composto                                                              | Modos Ativos do SO <sub>3</sub> =            |                                    |                                    |  |
|-----------------------------------------------------------------------|----------------------------------------------|------------------------------------|------------------------------------|--|
|                                                                       | $v_1 e v_3 (cm^{-1})$                        | ν <sub>2</sub> (cm <sup>-1</sup> ) | v <sub>4</sub> (cm <sup>-1</sup> ) |  |
| Cu <sub>2</sub> SO <sub>3</sub> .CuSO <sub>3</sub> .2H <sub>2</sub> O | 1118,85(m); 1024,33(m); 993,49(F); 974,17(F) | 620,19(m)                          | 474,55(m)                          |  |
| Cu <sub>2</sub> SO <sub>3</sub> .FeSO <sub>3</sub> .2H <sub>2</sub> O | 1117,88(m); 1011,79(F); 930,77(F)            | 667,45(m); 619,23(m)               | 494,80(m)                          |  |
| Cu <sub>2</sub> SO <sub>3</sub> .MnSO <sub>3</sub> .2H <sub>2</sub> O | 1119,81(m); 1011,79(F); 938,48(F)            | 661,66(m); 620,19(m)               | 496,73(m)                          |  |
| Cu <sub>2</sub> SO <sub>3</sub> .CdSO <sub>3</sub> .2H <sub>2</sub> O | 1114,03(m); 992,50(F); 965,49(F)             | 652,98(F); 618,26(m)               | 479,37(m)                          |  |
| Cu/Mn/Cd                                                              | 1115,00(F); 993,46(F); 962,60(F)             | 654,91(F); 619,23(F)               | 490,94(f)                          |  |
| Cu/Cd/Fe                                                              | 1115,96(F); 992,50(f); 962,60(F)             | 652,98(F); 619,23(F)               | 482,26(f)                          |  |
| Cu/Fe/Mn                                                              | 1115,00(m); 1011,79(f); 938,48(F)            | 662,63(m); 619,23(m)               | 498,66(f)                          |  |

Tabela 4. Concentrações de M(II) nos sais Cu<sub>2</sub>SO<sub>3</sub>.M(II) SO<sub>3</sub>.2H<sub>2</sub>O obtidos a partir de misturas ternárias contendo sulfato cúprico e sulfato de dois outros metais M(II).

| Mistura  |      | Meta | 1 (%) |      |
|----------|------|------|-------|------|
|          | Cu   | Fe   | Mn    | Cd   |
| Cu/Mn/Cd | 28,1 | -    | 1,4   | 19,7 |
| Cu/Fe/Cd | 24,9 | 0,9  | -     | 19,3 |
| Cu/Fe/Mn | 32,3 | 5,1  | 8,6   | -    |

Tabela 5. Percentual dos sais  $Cu_2SO_3.M(II)SO_3.2H_2O$  obtidos a partir de misturas ternárias contendo sulfato cúprico e sulfato de dois outros metais M(II).

| Mistura  | Sulfito Duplo (%)                                                     |                                                                       |                                                                       |                                                                       |
|----------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
|          | Cu <sub>2</sub> SO <sub>3</sub> .CuSO <sub>3</sub> .2H <sub>2</sub> O | Cu <sub>2</sub> SO <sub>3</sub> .FeSO <sub>3</sub> .2H <sub>2</sub> O | Cu <sub>2</sub> SO <sub>3</sub> .MnSO <sub>3</sub> .2H <sub>2</sub> O | Cu <sub>2</sub> SO <sub>3</sub> .CdSO <sub>3</sub> .2H <sub>2</sub> O |
| Cu/Mn/Cd | 6,7                                                                   | -                                                                     | 11,8                                                                  | 81,5                                                                  |
| Cu/Fe/Cd | 2,2                                                                   | 8,2                                                                   | -                                                                     | 88,9                                                                  |
| Cu/Fe/Mn | 1,6                                                                   | 36,4                                                                  | 62,0                                                                  | -                                                                     |

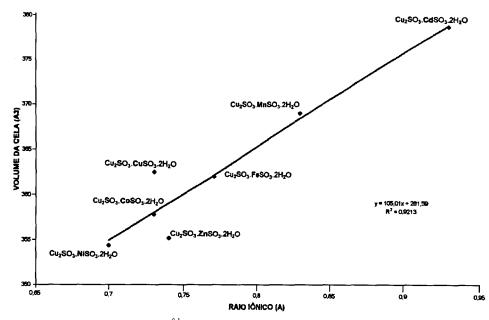



Figura 4. Correlação entre o volume da célula unitária (ų) dos sulfitos duplos do tipo Cu<sub>2</sub>SO<sub>3</sub>M(II)SO<sub>3</sub>2H<sub>2</sub>O e os respectivos raios iônicos M(II) (Å).

## **CONCLUSÕES**

- A nova rota de síntese proposta neste trabalho permite a preparação de sais com pureza elevada, o que pode facilitar o estudo da estrutura cristalina, das propriedades magnéticas e ópticas destes sais.
- O estudo da seletividade da reação utilizando solução-mãe contendo mais de um cátion M(II) demonstra que a preferência de

substituição do Cu(II) se dá na ordem decrescente de dureza, isto é, pelo cátion mais "macio".

## **AGRADECIMENTOS**

Os autores agradecem a Profa. Dra. Heloysa M.C. Andrade e Rosemário Cerqueira pela obtenção dos espectros no Infravermelho, a Profa. Dra. Maria das Graças Korn pelas análises de ICP, Dr. Rogério Vargas pelos desenhos e ao CNPq, FINEP, CAPES e Fundação Mitisubishi.

## REFERÊNCIAS

- 1. Chevreul, M. E.; Ann. Chim. 1812, 83, 187.
- Kierkgaard, P., Nyberg, B.; Acta Chem. Scand. 1968, 19, 2189.
- 3. Nyberg, B, Kierkgaar, P.; Acta Chem. Scand. 1968, 22, 581.
- 4. Larson, L. O.; Acta Chem. Scand. 1969, 23, 581.
- Nygerg, B., Larson, P. L. O.; Acta Chem. Scand. 1973, 27, 63.
- 6. Hjerten, I., Nyberg, B.; Acta Chem. Scand. 1973, 27, 345.
- Lutz, H. D., El Suradi, S.; Z. Anorg. Allg. Chem. 1976, 425, 134.
- 8. Pascal, P., "Nouveau Taité de Chimie Minerale" Vol. 111, Mason et Cie, Paris 1957, p. 298.

- 9. Cipriano, C., Dissertação de Mestrado, IQ-UFRJ, 1981.
- Miguel, A. H., de Andrade, J. B., Cot, L., Duran, J.; Anais do II Simpósio Nacional de Química Inorgânica, USP, SP, 1984, pp 18-19.
- Cox, X. B., Linton, R. W., Miguel, A. H., de Andrade, J. B.; Atmos. Environ., 1986, 20, 1139.
- Hall, J. P., Griffith, W. P.; Inorg. Chim. Acta. 1981, 48, 65.
- 13. Évans, J. C., Bernstein, H. J.; Can. J. Chem. 1955, 33, 1270.
- 14. Conklin, M. H., Hoffmann, M. R.; Environ. Sci. Technol. 1988, 22, 883.
- Gray, H. B.; Chemical Bonds: An Introduction to Atomic and Molecular Structure; Benjamin/Cummins: Menlo Park, CA, 1973.
- Sghyar, M., Durand, J., Miguel, A. H., Cot, L.; Rev. de Chem. Mine. 1984, 21, 710.