UM MICROCOMPUTADOR DE BAIXO CUSTO PARA CONTROLE E AQUISIÇÃO DE DADOS EM ANÁLISE **OUÍMICA POR INJECÃO EM FLUXO**

Boaventura F. dos Reis e Maria Fernanda Gine Centro de Energia Nuclear na Agricultura - USP - 13400 - Piracicaba - SP Eloisa A. M. Kronka UNAERP - Ribeirão Preto - SP

Recebido em 28/11/91; cópia revisada em 29/1/92

A low cost dedicated microcomputer based on the well known 8085 microprocessor was developed to control a flow injection system. The basic structure, interfaces to drive the injector-commutator and to read the analogical output of the spectrophotometer were also constructed. Al the steps involved in the flow injection analysis process were controlled by a software written in assembler language.

Keywords: flow injection analysis; computer interface; automated injector-commutator.

INTRODUÇÃO

Há no momento uma tendência universal de empregar-se computadores no laboratório, atuando diretamente na aquisição de dados, possibilitando um processamento praticamente em tempo real. A implantação desse procedimento tem sido executada em dois caminhos distintos: o equipamento adquirido já tem uma estrutura física (hardware) baseada em computador ou os recursos de informática são desenvolvidos pelos pesquisadores para controlar equipamentos ainda não dotados com controle digital e programação.

O primeiro caso é um recurso somente disponível em equipamentos, pelo menos de porte médio, e na maioria dos casos trata-se de sistemas fechados, onde o pesquisador não tem acesso para implementar qualquer modificação em nível de "hardware" ou de "software", limitando, em muitos casos, o campo de atuação. No segundo caso o pesquisador emprega unidades (equipamentos) discretas e cria uma estrutura informatizada, desenvolvendo o "hardware" e o "software", sendo possível obter excelente desempenho com equipamento de custo moderado. Um aspecto importante, neste caso, é a formação de recursos humanos na área de instrumentação, pois a execução de um trabalho dessa natureza acaba tendo um caráter multidisciplinar.

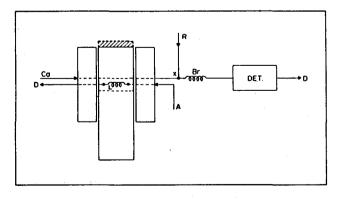


Figura 1. Diagrama de um sistema de análise química por injeção em fluxo. As barras retangulares formam o injetor. A = amostra, D = descarte, L = alça de amostragem, Ca = fluxo carregador, R = reagente, X = confluência, Br = bobina de reação, DET = detector. As setas indicam a direção de bombeamento das soluções e a área hachurada indica o deslocamento da barra central para a posição de inserção da amostra no carregador.

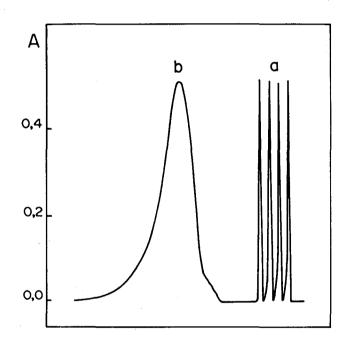


Figura 2. Sinal gerado por um espectrofotômetro em um sistema FIA. Picos traçados por um registrador potenciométrico acoplado à saída analógica do espectrofotômetro. O conjunto de picos a - mostra a reprodutibilidade dos sistema e b - mostra o perfil de distribuição da amostra no carregador, a qual foi obtida aumentando-se a velocidade do papel.

Também no segundo caso há caminhos diferentes que podem ser adotados. Compra-se um computador comercial e desenvolvem-se as interfaces de controle e de aquisição de dados e o programa necessário para gerenciar o processo que se deseia controlar.

Esse caminho é mais apropriado quando o processo que se pretende controlar abrange muitas etapas, envolvendo controle de equipamentos, aquisição de dados e processamento matemático. Entretanto há muitas tarefas de labotatório, incluindo o desenvolvimento de métodos analíticos e seu emprego em análise de rotina, os quais podem ser automatizados, empregando-se poucos recursos de informática. Nesse artigo apresentamos a estrutura física de um microcomputador desenvolvido para controle e aquisição de dados em análise de rotina, empregando o processo de análise química por injeção em flu-

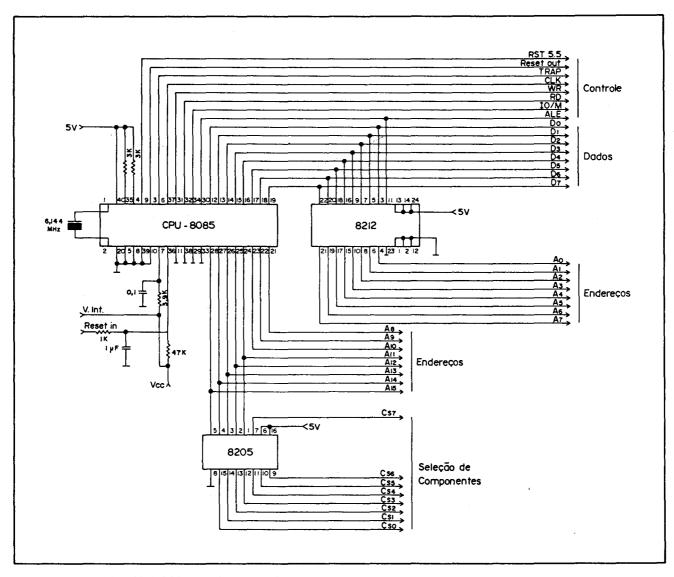


Figura 3. Esquema da unidade básica do microcomputador.

xo. Acreditamos que outros pesquisadores possam empregá-lo para outras atividades.

DESCRIÇÃO DO PROCESSO DE ANÁLISE QUÍMICA POR INJEÇÃO EM FLUXO

Para se desenvolver um equipamento para controle e aquisição de dados, é necessário que se conheça o processo que desejamos controlar. Assim faremos uma breve descrição do processo de análise química por injeção em fluxo (FIA). Acreditamos que isso ajudará a entender a filosofia que norteou o desenvolvimento do microcomputador.

O processo de análise química por injeção em fluxo executa de maneira semi-automática várias etapas envolvidas em uma análise química^{1,2}. Na figura 1 é mostrado um diagrama de fluxo empregado para implementar esse processo. Na posição indicada, está sendo feita a amostragem. Deslocando-se o injetor para a outra posição, a amostra contida na alça de amostragem é transportada pelo carregador para o detector. Na confluência recebe o reagente e a reação química se desenvolve no reator B, o qual é acoplado à cela de detecção. Devido a dispersão da amostra no fluido carregador, a concentração do composto formado varia ponto a ponto. A detecção é efetuada com a amostra em movimento em relação ao de-

tector, por isso o sinal gerado não alcança um estado estacionário para leitura, sendo então necessário monitorá-lo com um registrador potenciométrico, obtendo-se um registro semelhante ao mostrado na figura 2. A altura máxima ou a área sob a curva são ambas proporcionais à concentração do analito. A altura máxima do pico é mais fácil de ser medida manualmente, sendo por isso usada para calcular a concentração da espécie química de interesse.

O microcomputador objeto desse artigo terá uma estrutura a nivel de "hardware" e de "software", para controlar as etapas de amostragem e de injeção da amostra e, também, monitorar a saída analógica do detector (espectrofotômetro), abolindo a necessidade de acompanhamento com o registrador potenciométrico.

DESCRIÇÃO DA ESTRUTURA FÍSICA (HARDWARE) DO MICROCOMPUTADOR

O microcomputador foi desenvolvido a partir do microprocessador 8085 da Intel e sua estrutura é idêntica a Kit SDK-85 do mesmo fabricante³. A estrutura física do microcomputador foi desdobrada em 4 partes para facilitar a descrição de seu funcionamento.

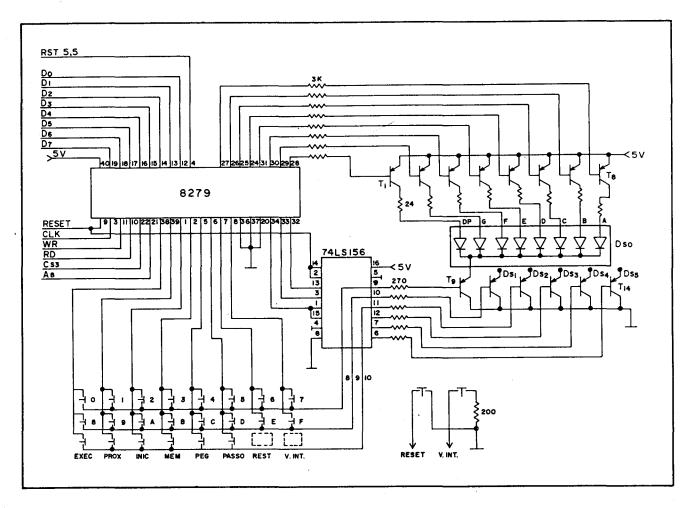


Figura 4. Esquema do decodificador de teclado e display. As 24 chaves do tipo normalmente abertas formam um teclado hexadecimal. Os dígitos DSo, Ds1..., DS5 formam o display. T1, T2 ... T14 são transistores BC 557.

O microprocessador 8085 emprega as 8 linhas menos significativas (LSB-Least Significant Byte) das vias de endereço, ora para endereçar periféricos (portas, memórias, etc), ora para transmitir ou receber dados. Diz-se então que ele multiplexa as vias de dados com as de endereços. Muitos periféricos empregados em computador não possuem essa característica, sendo necessário promover a separação dos dois conjuntos de vias, o que é feito pelo circuito integrado (CI) 8212, Fig. 3. O microprocessador 8085 pode endereçar aproximadamente 65.000 periféricos de 8 bits, mas só pode comunicar-se com um dispositivo de cada vez, sendo a seleção efetuada pelo decodificador de endereço 8205 ou 74LS138. No esquema da Fig. 3 a lógica de controle desse dispositivo foi arranjada para endereçar os primeiros de 16000 locações, assim cada uma das 8 linhas da saída desse CI cobre um espaço de 2000 endereços.

A comunicação entre o usuário e o microcomputador é feita por meio de um teclado e de um display formado por 6 digitos de LEDs (Light Emitting Diode), cujo esquema é mostrado na Fig. 4. Os circuitos integrados 8279 e 74LS156 formam um conjunto, cuja função é ler o teclado e acender o "display", obedecendo as instruções enviadas pela CPU (Central Processing Unit).

O microprocessador 8085, no instante em que é ligado à alimentação, emite o endereço OOOOH (Hexadecimal) e lê a instrução armazenada neste endereço, onde deve começar o programa para inicializar o microcomputador. Na Fig. 5. é mostrado o esquema do acoplamento das memórias. Os ende-

reços de OOOOH a O7FFH foram reservados para o programa monitor e os endereços de O8OOH a OFFFH foram reservados para a memória, onde foi gravado o programa de controle e aquisição de dados. Cada um dos três circuitos integrados 6116, possui 2K bytes (1byte = 8bits) de memórias de dados (RAM - Randon Access Memory). A lógica de controle foi feita para que estas sejam acessadas nos endereços de 28OOH a 2FFFH, de 3OOOH a 37FFH e de 38OOH a 3FFFH respectivamente. Essas memórias serão usadas para guardar as leituras temporariamente durante a aquisição de dados.

Os computadores em geral não possuem meios para ação direta sobre dispositivos externos, sendo necessário dispor de uma interface apropriada a cada caso. Na Fig. 6 é mostrado o esquema da interface desenvolvida para acionar o injetor durante o processo de análise química. A mesma é baseada no circuito integrado 8155, o qual tem 3 portas programáveis sendo 2 de 8 bits e uma de 6, um timer programável de 14 bits e 256 byts de memória de dados (RAM). Esse CI tem as vias de dados e de endereços multiplexados, podendo ser acoplado direto à CPU 8085.

Um grande número de equipamentos empregados em laboratórios de análise química, não possuem saída digital para ser acoplado a um computador, em vista disso desenvolveu-se uma interface analógica/digital cujo esquema é mostrado na Fig. 7. O conversor analógico/digital 7107 empregado nessa interface, não pode ser acoplado direto à via de dados do microprocessador, sendo necessário fazer o aclopamento por

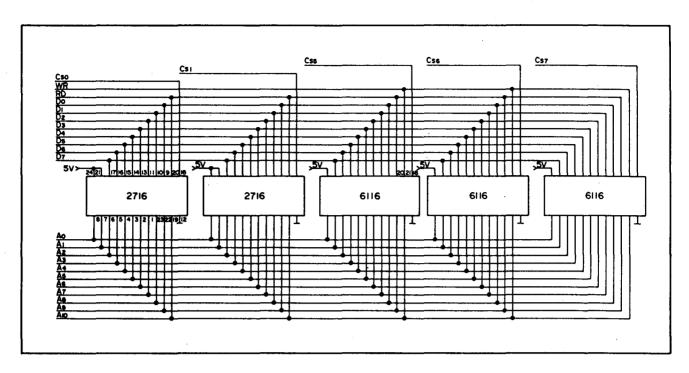


Figura 5. Esquema do acoplamento das memórias à unidade básica. CIs 2716 memórias EPROM e 6116 memórias RAM.

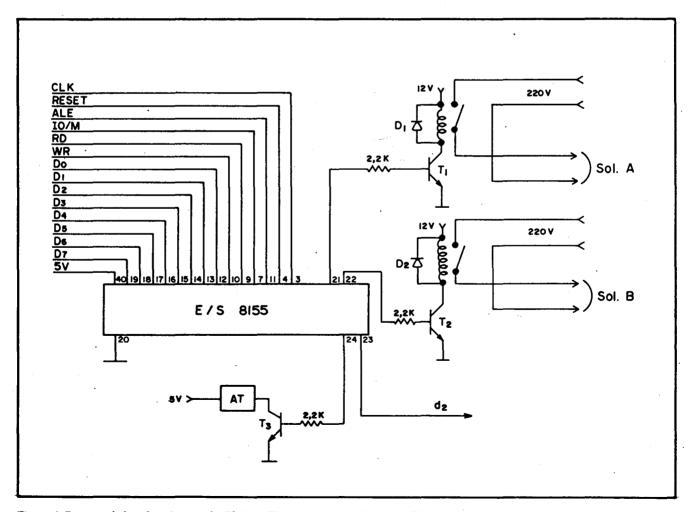


Figura 6. Esquema da interface de controle. T1, T2 e T3 transitores BC 547, AT alto-falante de 3W de potência, D1 e D2 diodos de 1A e 100V, d2 é usado para zerar o detector de pico da figura B. Os contatos dos dois relés são para corrente de 10A.

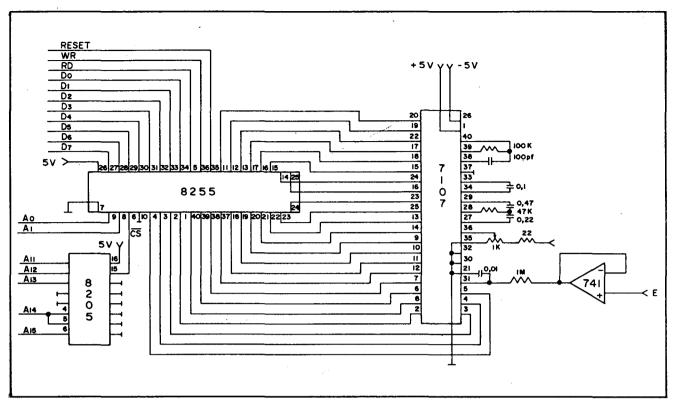


Figura 7. Esquema da interface analógica/digital. A leitura do conversor A/D 7107 é feita através dos endereços 80, 81 e 82. Os resitores são do tipo "metal film", exceto o de 1k que é um trim-pot multivoltas. O capacitor de 0,22 uF deve ser de teflon ou poliéster metalizado.

meio do CI 8255, que tem 3 portas progamáveis de 8 bits cada. Esse conversor foi escolhido tendo em vista o baixo custo e a facilidade de aquisição no mercado nacional. Apresenta ainda como vantagem grande imunidade a ruído e a capacidade de gerar sua própria base de tempo (frequência de clock). A saída é codificada para "display" de 7 segmentos, e é decodificada para decimal pela subrotina de aquisição de dados. O fundo de escala é o dobro da tensão de referência aplicada ao pingo 36 e foi ajustado para 200mv; assim ob-

tém-se resolução de 0,1mv. O número de conversões por segundo é função da base de tempo, a qual é gerada pelo resistor e pelo capacitor ligados aos pinos 38 e 39, sendo de 48KHz para os valores dos componentes relacionados nessa figura. Com essa frequência de clock tem-se uma taxa de 3 conversões por segundo, a qual é suficiente para leitura dos sinais gerados pelo processo de análise química por injeção em fluxo. Segundo o fabricante a taxa de conversão pode ser aumentada até 15, aumentando-se a frequência de clock⁴. Essa

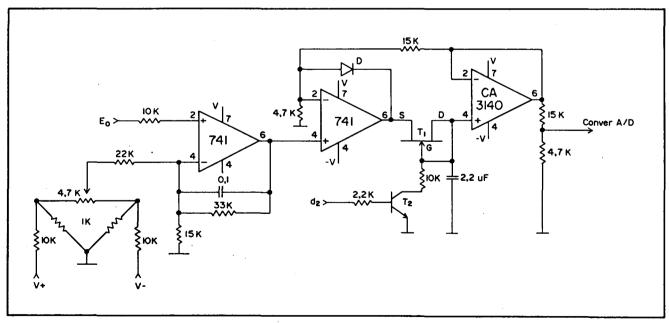


Figura 8. Esquema da interface condicionadora de sinal. T1 transitor FET BF 245, T2 transitor BC 547, d2 é acoplado à interface da figura para zerar o detector de pico.

interface já foi publicada em um número anterior de Química Nova⁵ e inclui-se neste caso para completar a estrutura física do equipamento.

No processo de análise química por injeção em fluxo o sinal gerado varia com o tempo, e o valor máximo é o parâmetro mais usado para calcular a concentração do analito². Por facilidades de "hardware" e de custo optou-se por um conversor analógico/digital lento, sendo portanto mais seguro ler o sinal gerado em condições estáticas. Para isso foi desenvolvida a interface condicionadora de sinal mostrada na figura 8. O primeiro amplificador operacional tem a função somente de amplificação, enquanto que os outros dois formam um detector de pico (pic hold). Após cada leitura o detector de pico é zerado pelo microcomputador ativando a base do transitor.

DESCRIÇÃO DO SOFTWARE DE CONTROLE

Uma vez construída a estrutura física do microcomputador, é necessário um sistema operacional (monitor) que permita a comunicação entre o usuário e o microcomputador. Para esse fim adotou-se um sistema operacional desenvolvido pela Intel³ para ser usado no kit SDK-85. Esse sistema operacional possui rotinas para ler o teclado, escrever dados no display e para execução de programas escritos pelo usuário. O sistema operacional foi gravado em memória EPROM (Erasable Read

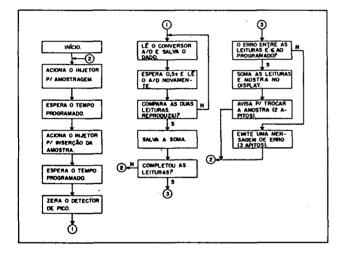


Figura 9. Algorítmo do programa de controle e aquisição de dados.

Only Memory) e ocupa os endereços de OOOOH a O7FFH.

O programa de controle e aquisição de dados foi desenvolvido em assembler do microprocessador 8085, tem aproximadamente 1500 bytes de extensão e foi gravado na memória EPROM que ocupa os endereços de 0800H a 0FFFH. Na figura 9 é mostrado o algoritmo do mesmo.

Desenvolveu-se o programa de controle e aquisição de modo a tornar o microcomputador bastante maleável e fácil de ser operado. Assim para colocá-lo em operação, o usuário introduz os parâmetros de controle e inicializa-o no endereço 0800H. Feito isso, o microcomputador executa todas as etapas envolvidas no processo de análise química por injeção em fluxo, isto é, acionar o injetor para as posições de amostragem e de injeção e ler o sinal gerado pelo detector.

Os parâmetros de controle, os quais devem ser introduzidos antes de iniciar a execução da análise, são: o tempo de amostragem; o tempo de injeção; o endereço da memória a partir do qual os dados serão guardados; o erro relativo máximo aceito entre leituras da mesma amostra; e o número de injeções a serem efetuadas em cada amostra.

Os parâmetros de controle em questão são armazenados

nas memórias de endereço 2000H a 2007H, cuja definição é descrita a seguir.

Endereço	Parâmetro	Definição
2000 01	X1X0 X3X2	Tempo de amostragem em décimos de segundos.
2002 03	Y1Y0 Y3Y2	Tempo de injeção em décimos de segundo.
2004 05	W1W0 W3W2	Endereço inicial para guardar as leituras.
2006	ER	Erro máximo entre leituras 0< ER < 9.
2007	N	Número de injeções por amostra 1 < N < 3.

Os tempos de amostragem e de injeção são formados pelos 4 dígitos X3X2X1X0 e Y3Y2Y1Y0 respectivamente e podem assumir os valores hexadecimal de 0001H a FFFFH. Isso possibilita variar em décimos de segundos e de maneira independente os tempos de amostragem e de injeção. Assim, podemos usar o microcomputador para executar qualquer procedimento analítico empregando o processo FIA. Após injetar a amostra o número de vezes programadas no endereço 2007H, o microcomputador calcula o erro relativo entre a menor e maior leitura e compara com o estabelecimento no endereço 2006H. Se o valor encontrado for menor ou igual, ele avisa o operador para trocar a amostra e escreve o valor da leitura no display. Essas condições não sendo satisfeitas, a amostra é injetada mais uma vez e sua leitura é comparada com as anteriores e se o resultado desfavorável persistir, o microcomputador escreve uma mensagem de erro no "display". Neste caso o operador deve verificar qual é a causa das medidas não se reproduzirem. Embora o microcomputador em apreço tenha uma estrutura mínima a nível de "hardware" e de "software". possibilita tomar decisões em tempo real, em função do que está acontecendo no procedimento de análise.

No momento temos no laboratório da Seção de Química Analítica do CENA/USP 5 protótipos, sendo que alguns deles estão em operação há mais de 5 anos e têm apresentado ótimo desempenho.

Esse mesmo equipamento pode ser desenvolvido a partir do Kit S-1000 da Telematic que é a versão Nacional do kit SDK-85 da Intel³. Neste caso é necessário apenas instalar as memórias RAMs, e a interface A/D e escrever o programa de controle e aquisição de dados.

Aos interessados podemos fornecer a listagem do programa.

REFERÊNCIAS

- Ruzicka, J.; Hansen, E.H. "Flow injection analysis, 2ND ed., John Wiley & Sons, 1988.
- Reis, B.F.; Gine, M.F.; Kronka, E.A.M.; Química Nova (1989) 12, 82.
- MCS-80/85 Family User's Manual, Intel Corporation, 3065 Bawers Avenue, Santa Clara, CA 95051, 1979.
- Intersil ICL 106/ICL 7107 componentes data sheet, 301650
 003, Tantau Avenue Cupertino, CA 95014.
- 5. Reis, B.F.; Química Nova (1989) 12, 282.
- Telemátic Sistemas Inteligentes LDA R. Olimpíadas, 360, CEP 04551 V. Olímpia - SP

Publicação financiada pela FAPESP