DETERMINAÇÃO QUALITATIVA DOS CÁTIONS: Al, Co, Cu, Fe, Mn, Ni e Zn, EM MINÉRIOS, EMPREGANDO-SE A CROMATOGRAFIA DE PARTIÇÃO EM PAPEL E ÓLEO DE FÚSEL COMO SOLVENTE.

Manoel L. Menezes

Departamento de Química - Faculdade de Ciências - UNESP - Cx. P. 473 - 17030 - Bauru - SP

Joaquim T. S. Campos e José C. Moreira

Instituto de Química de Araraquara - UNESP - Araraquara - SP

Recebido em 21/10/91; cópia revisada em 20/7/92

The present work concerns the determination of the RF values for the cations: Al, Co, Cu, Fe, Mn, Ni and Zn, employing the mobile phase systems: FUSEL OIL: HCL x M (x - 1.0, 6.0 and 12,0) in paper chromatography. The results obtained were employed in the identification of the cations: Al, Cu, Fe and Mn in brazilian ores of iron (goethic, hematite), copper (azurite, chalcopyrite) and manganese ("cryptomelane").

Keywords: fusel oil; paper chromatography

INTRODUÇÃO

Na fermentação dos açucares pela levedura, obtém-se além do álcool etílico, uma pequena quantidade de óleo de fúsel (do alemão Fúsel, aguardente inferior), que é uma mistura de alcoois primários: principalmente álcool n-propílico, álcool isobutílico e 2-metilbutanol-1¹.

O óleo de fúsel até o momento tem sido empregado como aditivo de combustíveis, matéria-prima para a indústria de plástico, etc. Na área da química analítica, destacam-se apenas dois trabalhos científicos^{2,3}, empregando-se o óleo de fúsel na extração de íons metálicos em soluções aquosas, apresentando uma boa seletividade e bom rendimento da ordem de 94 a 96%.

Em função de algumas características muito peculiares deste solvente, preocupou-se em empregar o óleo de fúsel, como principal componente da fase móvel em cromatografia de partição em papel, para caracterização de minérios.

EXPERIMENTAL

Preparação das fases móveis

O óleo de fúsel técnico (procedente da usina de álcool Brilhante-Jaú-SP), foi usado sem purificação prévia, pois sabe-se que quando purificado, torna-se imiscível com soluções aquosas de HCl (isto deve-se ao fato de separar álcoois de baixo peso molecular).

Testes qualitativos prévios mostraram que íons metálicos não estão presentes neste óleo de fúsel.

Os cromatogramas foram desenvolvidos usando-se como fase móvel somente o óleo de fúsel, ou então em mistura com HCl nas concentrações 1,0, 6,0, e 12,0 M. sempre na proporção em volume de 80:20.

Preparação das amostras de minérios

As soluções aquosas das amostras de minérios estudados, foram preparadas dissolvendo-se 0,025 g do minério em pequenos volumes de ácido clorídrico 10,0 M ou água régia⁶, como mostra a Tabela 1. Em seguida, foram filtrados e diluídos para 10 ml com água destilada e, aplicados nos papéis como se descreve a seguir.

Tabela 1. Quantidades de ácido clorídrico 10,0 M. de águarégia e o tempo necessário para a dissolução completa (exceto de sílica) dos minérios.

Minerais	Volume	Tempo total	
	HCl 10,0 M	Água-Régia	de ataque (min)
Magnetita	2.5		30
Goethita	2.5		15
Hematita (água-clara)	3.0	_	40
Hematita (corumbá)	3.0	· —	30
Calpopirita		2.0	50
Azurita	2.0		15
"Criptomelano"	2.0	_	15

Preparação dos cromatogramas

Foram cortadas tiras de papel para cromatografia, medindo-se 4,0 cm de largura e 12,5 cm de comprimento.

Estas, em seguida, foram cortadas longitudinalmente com auxílio de um estilete, em oito sub-tiras medindo 0,5 cm de largura por 10 cm de comprimento⁴, com o objetivo de diminuir o fenômeno da difusão das manchas no desenvolvimento cromatográfico. Nestas foram aplicadas com auxílio de um tubo capilar, soluções aquosas padrões dos cátions: Al, Co, Cu, Fe, Mn, Ni e Zn na forma de cloretos. Procedeu-se identicamente com as soluções dos minérios dissolvidos em meios ácidos.

Os cromatogramas foram desenvolvidos, em cubas cromatográficas, previamente saturadas com a própria fase móvel, composta de óleo de fúsel e ácido clorídrico (1,0, 6,0 e 12,0 M). Após a revelação dos cátions, nebulizando-se uma solução alcoólica de alizarina e solução clorofórmica de ditizona⁴, para identificar especificamente o zinco, foram obtidos os valores de R_F dos cátions isoladamente (Tabela 2). Posteriormente, com esses valores de R_F elaborou-se a Figura I (espectro cromatográfico)⁵.

RESULTADOS E DISCUSSÕES

Analisando-se a Tabela 1, observa-se que as amostras de minérios dissolveram-se facilmente em meio de ácido clorídrico 100 M, exceto a calcopirita em que houve necessidade

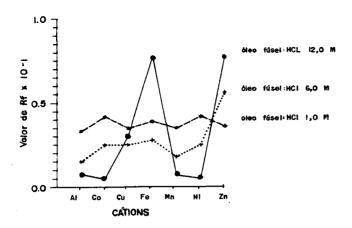


Figura I - Espectro Cromatográfico nas fases móveis óleo fúsel: HCl (1,0, 6,0 e 12,0 M) 80: 20 (v/v).

de empregar um meio mas energético, neste caso, a água-régia.

Analisando-se a Tabela 2, pode-se observar que o solvente puro tem pouca afinidade com os cátions, pois estes não são eluídos dos pontos de aplicação, exceto os íons, Co, Ni e Zn que apresentam manchas com linguetas, caracterizando maior afinidade com o solvente puro, quando comparado aos demais.

Tabela 2. Valores de R_F em função da fase móvel (Técnica de desenvolvimento ascendente)

Cátions	Fases Móveis						
	Óleo de	Óleo de Fúsel: Ácido clorídrico X M (80:20)					
	Fúsel Puro	X = 1,0	X = 6,0	X = 12,0			
Al ³⁺ Co ²⁺ Cu ²⁺	0,0	0,33	0,15	0,08			
Co ²⁺	0,0*	0,42	0,25	0,05			
Cu ²⁺	0,0	0,35	0,25	0,30			
Fe ³⁺	0,0	0,39	0,28	0,78			
Mn ²⁺	0,0	0,35	0,18 .	0,07			
Ni ²⁺	0,0*	0,42	0,25	0,05			
Zn ²⁺	0,0*	0,36	0,56	0,78			

^{*} A mancha apresenta lingueta.

Na fase móvel óleo de fúsel: HCl 1,0 M os fatores de separações são praticamente unitários, não permitindo portanto, boa separação entre os metais, mas em HCl 6,0 M e 12,0 M observou-se fatores mais adequados, onde os deslocamentos dos cátions são bastante satisíatórios.

A Figura I, mostra que a fase móvel óleo de fúsel: HC1 1,0 M (80:20), não é adequada para propor separações, por outro lado, as fases móveis óleo de fúsel: HC1 6,0 M e 12,0 M, são bem melhores. Observando-se estas curvas, pode-se propor várias misturas de cátions possíveis de serem separados. Com o auxílio da Figura I, desenvolveram-se os cromatogramas com amostras de minérios e respectivos padrões, com as fases móveis: óleo de fúsel; HC1 6,0 M e óleo de fúsel: HC1 12,0 M, obtendo-se bons resultados, como mostra a Tabela III.

Comparando-se as Tabelas 2 e 3, observa-se algumas diferenças entre os valores de R_f dos padrões dos cátions Cu e Fe nas amostras de azurita, calcopirita e Fe em minério de ferro na fase móvel empregando HCl 6,0 M. Esta variação nos valores de R_f deve-se provavelmente ao efeito "pistão" ou

Tabela 3. Valores de R_F para cátions Al³⁺, Cu²⁺,Fe³⁺ e Mn²⁺ identificados em alguns minerais metálicos estudados.

Minerais	Composição	Cátions	Fases Móveis	
	Química	Identificados	Óleo fúsel: HC l x M(80:20)	
			X = 6,0	X = 12,0
Azurita		Al ³⁺	0,05	0,05
	Cu ₃ (CO) ₂ (OH) ₂	Cu ²⁺	0,10	0,28
		Fe ³⁺	0,40	0,80
Calcopirita		Al ³⁺	0,03	0,05
	Cu Fe S ₂	Cu ²⁺	0,10	0,28
		Fe ³⁺	0,40	0,85
Criptomelano		Al3+	0,03	0,05
		Mn ²⁺		0,13
		Fe ³⁺	0,40	0,80
Hematita	Fe ₂ O ₃	Al ³⁺	0,03	0,05
(água-clara)		Fe ³⁺	0,40	0,80
Hematita	Fe ₂ O ₃	Al ³⁺	0,03	0,05
(Corumbá)		Fe ³⁺	0,40	0,80
Goethita	HFeO ₂	Al ³⁺	0,03	0,05
		Fe ³⁺	0,40	0,80
Magnetita	Fe ₃ O ₄	Al ³⁺	0,03	0,05
		Fe ³⁺	0,40	0,80

formação de complexos solúveis desses cátions com componentes da fase móvel.

CONCLUSÃO

- 1) O Óleo de fúsel técnico, por não apresentar contaminação por metais, pode ser usado em purificação prévia, para a separação de metais presentes em minérios.
- 2) Os melhores fatores de separação foram observados, na fase móvel óleo de fúsel: HCl 12,0 M (80:20), cujos valores de R_F são bem definidos, as manchas nos cromatogramas são bem contornadas, ou seja, não ocorrem fenômenos de difusão, que são facilmente observados em outras fases móveis.
- 3) O tempo de desenvolvimento dos cromatogramas para 10,0 cm é de 110 minutos.
- 4) A fase móvel óleo de fúsel:HCl 12,0 M é a mais adequada para efetuar as caracterizações dos minérios estudados.

REFERÊNCIAS

- Morrison, R. T.; Boyd, R.N.; "Química Orgânica", 3º edição, Fundação Calouste Gulbenkian, Lisboa, 1973, p.611.
- 2. Srivastava, T.N.; Rupainwar, D.C., Fresenius Z. Anal. Chem. (1973), 267, 287.
- 3. Gukasyan, Z.H. G.; Saakyan, O.A.; Arustamyan, R. K., Tsvetn. met., (1979), 12, 61
- 4. Menezes, M. L. "Determinação dos valores de Rf na Cromatografia em papel e em Camada Delgada usando as fases móveis diacetona-álcool, óxido de mesitileno puros e em misturas com ácido clorídrico e sua Aplicação na Análise Qualitativa de Minerais Metálicos", Araraquara UNESP, 1988, Dissertação de Mestrado.
- Waqif, S.; Bayburdi, A., Analisis, 2(10-11): 746-4, 1973/1974. 1973/1974, 2(10-11), 746-49.
- Ritchie, A. S. "Chromatography in Geology", Amsterdam, 1864, p.185.

Publicação financiada pela FAPESP