CONSTRUÇÃO E DESEMPENHO DE UM ESPECTRÔMETRO DE MASSAS POR TRANSFORMADA DE FOURIER

Paulo C. Isolani, Marcia C. Kida-Tinone, Harrald V. Linnert, Jair J. Menegon, José M. Riveros, Peter W. Tiedemann Instituto de Química - Universidade de São Paulo - Cx.P. 20780 - 01498 - São Paulo - SP Renato M. Franzin

LSI - Departamento de Engenharia Elétrica - Escola Politécnica - USP

Recebido em 13/2/92; cópia revisada em 22/5/92

The construction of a Fourier Transform ion cyclotron resonance spectrometer using an electromagnet is described. The high resolution capabilities at low m/z, and the ability to study ion/molecule reaction kinetics and negative ion chemistry are briefly illustrated.

Keywords: mass spectrometry; Fourier transform

A espectrometria de ressonância ciclotrônica de íons por transformada de Fourier, ou espectrometria de massa por transformada de Fourier, constitui uma técnica poderosa e versátil para o estudo de espécies iônicas em fase gasosa e encontra várias aplicações analíticas importantes. 1,2 Talvez a caraterística mais notável e conhecida desta técnica seja a possibilidade de se obter espectros de massa de altíssima resolução (acima de 106), desde que se trabalhe em ultra alto vácuo, com a pressão da amostra entre 10-8 e 10-7 Pa e a análise seja feita a campos magnéticos elevados (4,7 a 7,2 T). Este poder de resolução está muito acima daquele possível com instrumentos que utilizam setores magnéticos e elétricos.

Esta técnica é particularmente atraente para o estudo de problemas tão diversos como reações entre íons e moléculas neutras em fase gasosa, espectroscopia de fotodissociação de íons, caraterização de agregados atômicos ou moleculares (clusters), caraterização de superfícies por dessorção com laser e obtenção de dados termoquímicos para íons e moléculas neutras.³⁻⁵

A espectrometria de massa por transformada de Fourier é uma extensão natural da espectrometria de ressonância ciclotrônica de íons, desenvolvida no fim da década de 60 e de grande impacto nas décadas de 70 e 80, principalmente no estudo de reações íon/molécula em fase gasosa. Ambas as técnicas estão baseadas na habilidade de reconhecer íons de relação m/z diferente pela sua frequência caraterística de rotação num campo magnético homogêneo.

$$\omega = (q/m)B, \tag{1}$$

v (kHz) = 15356 B (Tesla) /m (unidades atômicas de massa)

No método de transformada de Fourier, todos os íons, independentemente de sua relação carga/massa são excitados simultaneamente a órbitas maiores, dando origem a um movimento coerente dos íons. A corrente induzida nas placas de uma cela pelos pacotes de íons assim formados é medida em função do tempo. A vantagem principal do modo de operação com transformada de Fourier reside justamente na possibilidade de detecção multicanal, capaz de fazer a amostragem inteira do espectro de uma só vez.

Uma caraterística comum destes métodos, muito útil para os estudos indicados acima, é a capacidade de aprisionar os fons na cela durante vários segundos antes de sua neutralização nas paredes da cela,^{6,7} permitindo realizar sequências experimentais complicadas em que se estuda a reação de um fon isoladamente, após a eliminação de todos os outros.

Neste artigo descrevemos a construção de um espectrômetro de massa por transformada de Fourier a partir do antigo espectrômetro de ressonância ciclotrônica de fons existente neste Instituto, cujo desenvolvimento progressivo foi descrito em diversas teses⁸⁻¹⁰ e cuja aplicação ao estudo de reações fon/molecula foi objeto de numerosas publicações anteriores.¹¹⁻¹⁴

SISTEMA DE VÁCUO

A cela do espectrômetro fica numa câmara retangular de alto vácuo de 26,6 cm de altura, e 8,0 x 4,5 cm de largura externa. Esta câmara foi projetada por nós e construída de aço inoxidável 316 (não magnético) nos Estados Unidos pela MDC Vacuum Products Corporation (Hayward, California). Cinco amostras de aço inoxidável nacional 316 de origem e fornecedores diferentes demonstraram ser magnéticas a 1,0 T. (Verificamos portanto que a indústria nacional produz este aço fora das especificações internacionais!!). Esta câmara está entre os polos de um antigo eletroímã Varian de 9 polegadas cujo campo magnético, regulado através de um sensor tipo Hall, é capaz de atingir um valor máximo de 1,4 T.

A câmara está conectada a uma das flanges CF100 de uma cruz. Ela é mantida em alto vácuo por meio de uma bomba turbomolecular com capacidade de bombeio de 240 1/s, ligada à flange CF100 oposta à da câmara. Uma válvula pneumática de gaveta de 6 polegadas, entre cruz e a bomba turbomolecular, permite isolar a câmara em alto vácuo em caso de falhas no sistema de bombeio. Uma bomba iônica de 30 1/s, para limpeza eventual e como sistema auxiliar de bombeio, foi instalada na terceira flange da cruz, podendo ser isolada por uma válvula manual. O vácuo final, obtido após repetidos ciclos de aquecimento, foi de 3x10⁻⁷ Pa, medido com uma válvula de ionização numa saída lateral entre a bomba iônica e a cruz. O próprio espectrômetro foi utilizado para verificar possíveis vazamentos no sistema de vácuo. A câmara tem na sua flange superior (CF100) 4 conectores MHV para os sinais de excitação e detecção, um conector de alto vácuo de 10 pinos e uma flange CF16 para instalação futura de uma válvula de gás pulsada. Duas janelas laterais e uma no fundo da câmara, em flanges CF16, permitem a irradiação dos íons na cela com dois lasers simultaneamente, numa geometria perpendicular.

O espectrômetro permite a introdução de até 4 amostras independentes através de válvulas de controle fino de vazão ("leak valves") ligadas à câmara através de um tubo de aço flexível. Este sistema de admissão é adequado para substâncias de pressão de vapor maior que 0,1 Pa. Um sistema diferente terá que ser construído futuramente para introdução di-

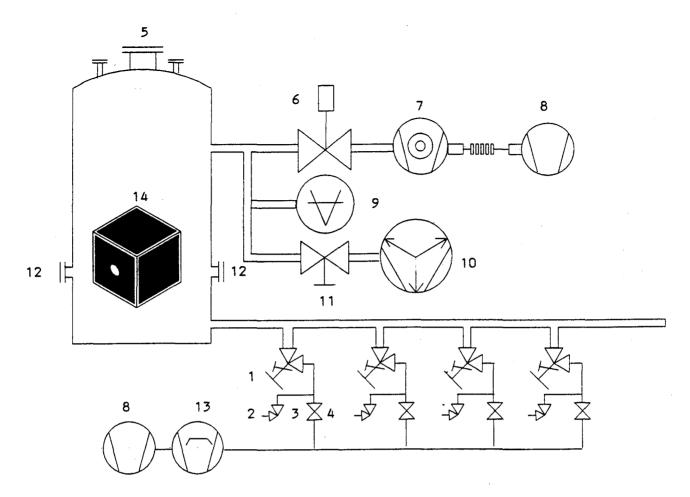


Figura 1. Esquema do sistema de vácuo do espectrômetro: (1) válvula de ajuste fino (leak valve) da Varian; (2) amostra; (3) válvula de ar-vácuo Varian; (4) válvula de vácuo da Nupro; (5) flange contendo conectores para radiofrequência e tensões de alimentação da cela; (6) válvula gaveta de 4"; (7) bomba turbomolecular Balzers de 240 l/s; (8) bomba mecânica; (9) válvula de ionização Bayard-Alpert; (10) bomba iônica Varian de 30 l/s; (11) válvula de isolamento de ângulo reto de ultra alto vácuo; (12) janela ótica; (13) bomba de difusão; (14) cela cúbica do espectrômetro.

reta de sólidos na câmara de alto vácuo.

O diagrama do sistema de vácuo com a posição da cela está detalhado na Figura 1.

O conjunto de alto vácuo em aço inox pode ser aquecido através de fitas de aquecimento ou resistências. Esta operação é essencial para limpeza do sistema e para atingir o limite inferior de vácuo.

A cela, fixada na flange superior da câmara de vácuo, foi montada com hastes de Vespel (uma poliimida da Dupont), o bloco de filamento de uma cerâmica usinável para alto vácuo (Aremcolox da Aremco, Ossining, NY, USA) e placas de cobre eletrolítico. Ela possui geometria cúbica com arestas de 2,5 cm de comprimento.

Um sistema de interligação com pressostatos e relés foi construído para proteger o sistema de vácuo contra falhas decorrentes de falta de energia elétrica, água ou mesmo de operação equivocada.

SISTEMA DE AQUISIÇÃO DE DADOS

O espectrômetro é comandado por um sistema de aquisição de dados da IonSpec (Irvine, California). Este sistema comanda o sintetizador de frequências, a sequência de pulsos, a aquisição dos transientes e a subsequente transformada de Fourier dos mesmos. Este sistema permite a excitação dos íons através de uma varredura rápida em frequência (chirp excitation), ou através de um pulso retangular de tensão elevada e duração menor do que 1 µs.

DESEMPENHO DO ESPECTRÔMETRO

Algumas caraterísticas do funcionamento deste espectrômetro são ilustradas através de diversas aplicações.

Resolução

Na Figura 2 tem-se o espectro de alta resolução de uma mistura de N₂ e CO, ambos de massa nominal m/z = 28 e de massas exatas 28,0061 e 27,9949 respectivamente. A uma pressão total de 6,5 x 10⁻⁶ Pa e um campo magnético de 1,25 T foi obtida uma resolução (FWHM) de 37.800. Esta resolução cai para 17.700 com o campo magnético a 1,0 T. Pequenas variações na pressão total não influenciam consideravelmente a resolução desde que o número de íons na cela seja mantido suficientemente baixo para evitar problemas de carga espacial.

Um segundo exemplo do poder de resolução deste instrumento pode ser visto na Figura 3. A análise de uma mistura de CO₂ e N₂O, cujos íons moleculares têm nominalmente m/z = 44, e massas exatas 43,9898 e 44,0011 respectivamente, revela nitidamente a capacidade de separação destas espécies com uma resolucão de 14.700 com um campo magnético de 1,25 T.

Finalmente, na Figura 4 tem-se o espectro de massa de Xe puro com os diversos isótopos na sua abundância natural. A um campo magnético de 1,25 T, este espectro corresponde a uma resolução de 4.850. Verifica-se que a abundância natural relativa dos isótopos é bem reproduzida pela intensidade dos picos.

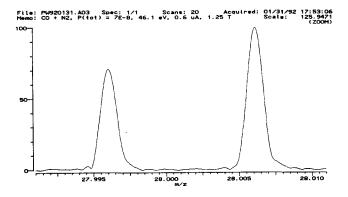


Figura 2. Espectro de massa de alta resolução, na vizinhança de m/z = 28, de uma mistura de CO e N_2 obtido a uma pressão total de $9x10^{-7}$ Pa. A escala de massa foi calibrada para o íon N_2^+ , m/z = 28,0061.

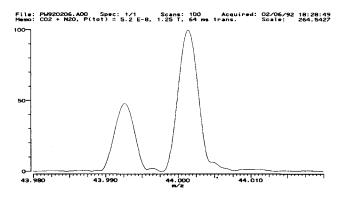


Figura 3. Espectro de massa de alta resolução, na vizinhança de m/z = 44, de uma mistura de N_2O e CO_2 a uma pressão de $6,6x10^7$ Pa. A escala de massa foi calibrada para o íon CO_2 (m/z = 44,0011).

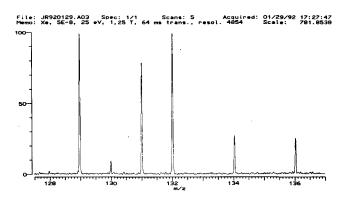


Figura 4. Espectro de massa do Xe a $6.5x10^{-7}$ Pa com os isótopos de número de massa 128 (abundância natural 16 1,92%), 129 (26,44%), 130 (4,08%), 131 (21,18%), 132 (26,89%), 134 (10,44%) e 136 (8,87%).

Estas experiências preliminares indicam que o limite de resolução rotineiro possível de ser atingido com este instrumento supera facilmente o dos espectrômetros de massa comerciais usados para análises rotineiras.

O limite superior de massa possível com este instrumento não foi ainda investigado pela necessidade de utilizar um sistema de introdução de sólidos para amostras de peso molecular elevado.

Estudo de íons negativos

Pela simples mudança de polaridade da tensão aplicada nas placas de aprisionamento da cela (perpendiculares ao campo magnético) pode-se detectar íons negativos neste espectrômetro. A Figura 5 apresenta o espectro de íons negativos obtidos a partir de SO₂F₂ a uma energia eletrônica de 3,6 eV. Esta substância é capaz de produzir eficientemente o íon F-, 15 íon usado frequentemente em estudos mecanísticos em fase gasosa. 12

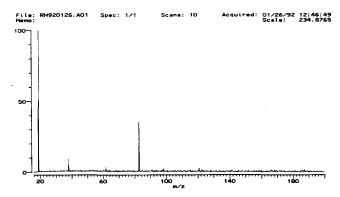


Figura 5. Espectro de íons negativos de SO₂F₂ obtido a uma energia eletrônica de 3,6 eV e a uma pressão de 2x10⁻⁶ Pa. Destacam-se os íons F (m/z 19), F₂ (38), SO₂F (83) e SO₂F₃ (121). Este último íon é o resultado de uma reação íon/molécula. Os picos que aparecem em m/z 61 e 98 são espúrios.

Cinética de reações ion/molécula

A cinética de reações íon/molécula pode ser estudada convenientemente em função do tempo de atraso entre a formação dos íons, por um pulso na energia eletrônica, e a excitação dos íons pelo sintetizador de frequências. Apenas para fins demonstrativos, as Figuras 6 e 7 apresentam as curvas cinéticas para as reações bem conhecidas que ocorrem em metano.

$$CH_4^{+} + CH_4 \rightarrow CH_5^{+} + {}^{\cdot}CH_3$$
 (2)
 $CH_3^{+} + CH_4 \rightarrow C_2H_5^{+} + H_2$ (3)

As constantes de velocidade destas reações podem ser obtidas a partir destas curvas e da pressão do metano na cela.

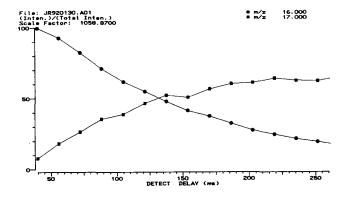


Figura 6. Cinética da reação (2) indicando o desaparecimento do ion CH_4^+ (m/z = 16) em função do tempo de reação e a formação do ion CH_5^+ (m/z = 17). Pressão do metano medida na válvula de ionização = $1,2x10^{-6}$ Pa.

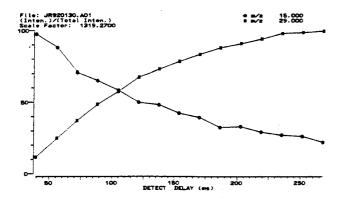


Figura 7. Cinética da reação (3) indicando o desaparecimento do lon CH_3^+ (m/z = 15) em função do tempo de reação e a formação do lon $C_2H_5^+$ (m/z = 29). Pressão do metano medida na válvula de ionização = $1,2x10^{-6}$ Pa.

CONCLUSÃO

Este espectrômetro de massas por transformada de Fourier recentemente colocado em operação permite o estudo detalhado de uma série de processos cinéticos estudados anteriormente neste laboratório de forma mais rudimentar com o espectrômetro de ressonância ciclotrônica de íons. Também introduz no País uma nova técnica de espectrometria de massa, que no exterior está se desenvolvendo rapidamente, devido à elevada resolução que permite alcançar, como aqui demonstrado. Além disso, o aparelho é pouco crítico em relação a sua construção, não exigindo a precisão mecânica de uma guia de íons de um espectrômetro de setor magnético ou dos eletrodos de um quadrupolo.

AGRADECIMENTOS

Os autores agradecem muito especialmente à FAPESP pela concessão de um Auxílio Especial (Processo 88/2625-4) para a construção deste espectrômetro. O apoio do Projeto BID-USP, do CNPq e da CAPES através de auxílio institucional,

foram também importantes em algumas das etapas deste projeto. Os autores lamentam o fato da FINEP ter aprovado parte deste projeto em 1988 sem nunca ter desembolsado nem sequer uma parcela do material permanente e do equipamento explicitamente constantes do contrato.

REFERÊNCIAS

- Buchanan, M. V., Ed., "Fourier Transform Mass Spectrometry: Evolution, Innovation, and Applications", ACS, Washington, DC, 1987.
- Freiser, B. S. em "Techniques for the Study of Ion Molecule Reactions", Farrar, J. M.; Saunders, W. H.; Eds; Wiley, New York, 1988, Cap. 2.
- 3. Nibbering, N. M. M.; Acc. Chem. Res. (1990), 23, 279.
- Gaeumann, T.; Riveros, J. M.; Zhu, Z.; Helv. Chim. Acta, (1990), 73, 1215.
- Riveros, J. M.; Ingemann, S.; Nibbering, N. M. M.; J. Am. Chem. Soc., (1991), 113, 1053.
- Marshall, A. G.; Grosshans, P. B.; Anal. Chem., (1991), 63, 215A.
- Marshall, A. G.; Verdun, F. R.; "Fourier Transforms in Optical, NMR and Mass Spectrometry: A User's Handbook", Elsevier, Amsterdam, 1990.
- Tiedemann, P. W., Tese de Doutoramento, Instituto de Química, USP, 1974.
- Isolani, P. C., Tese de Doutoramento, Instituto de Química, USP, 1974.
- Faigle, J. F. G., Tese de Doutoramento, Instituto de Química, USP, 1977.
- 11. Tiedemann, P. W.; Riveros, J. M.; J. Am. Chem. Soc., (1973), 95, 3140.
- Faigle, J. F. G.; Isolani, P. C.; Riveros, J. M.; J. Am. Chem. Soc., (1976), 98, 2049.
- Takashima, K.; Riveros, J. M.; J. Am. Chem. Soc., (1978), 100, 6128.
- 14. Riveros, J. M.; José, S. M.; Takashima, K.; Adv. Phys. Org. Chem., (1985), 21, 197.
- 15. Galembeck, S. E.; Faigle, J. F. G.; Riveros, J. M.; An. Acad. bras. Ci., (1978), 50, 67.
- 16. West, R. C., ed., "Handbook of Chemistry and Physics", CRC, OHIO, 52nd ed., 1971-1972, p B-349.

Publicação financiada pela FAPESP