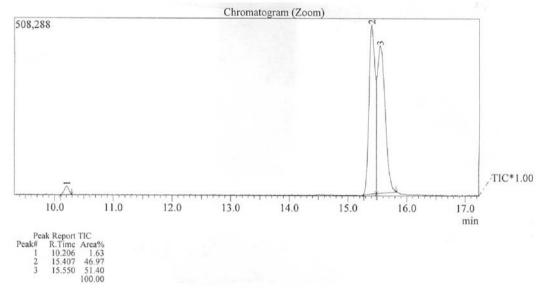


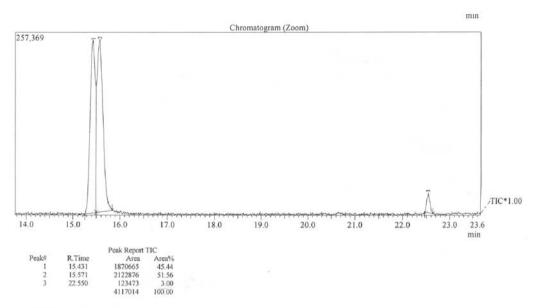
Potential Application in Biocatalysis of Mycelium-Bound Lipases from Amazonian Fungi


Sandra P. Zanotto,*,a Israel P. Romano,a Líliam U. S. Lisboa,a Sergio Duvoisin Jr.,a Mayra K. Martins,b Fabiana A. Lima,a Soraya F. Silva and Patrícia M. Albuquerque

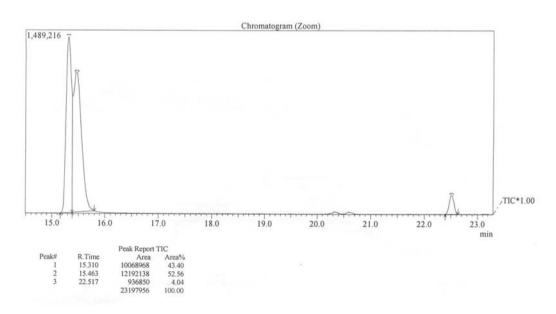
^aLaboratório de Biorgânica, Programa de Pós-graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas, 69050-030 Manaus-AM, Brazil

^bCentro de Biotecnologia do Amazonas, 69075-351 Manaus-AM, Brazil

Chromatograms used for the determination of conversion, enantiomeric excess and enantiomeric ratio of (R,S)-2-octanol resolution reactions are presented. Analyses were performed by gas chromatography coupled to mass spectrometry (Shimadzu GCMS-QP2010) using a chiral


stationary phase (Chirasil-Dex CB 25 m \times 0.25 mm ID \times 0.25 mm). Column temperature was 80 °C. The He pressure was 56.9 kPa and the temperatures of the injector and the detector were 220 °C and 275 °C, respectively.

Peak # 1: Reaction By-product Peak # 2: (*R*) or (*S*)-2-octanol Peak # 3: (*R*) or (*S*)-2-octanol


Figure S1. GC-MS chromatogram of (R,S)-2-octanol resolution mediated by the isolate UEA_001.

^{*}e-mail: sandrazanotto@pq.cnpq.br

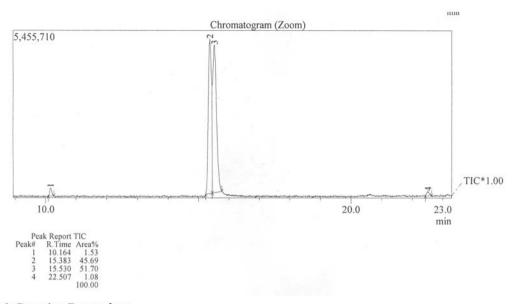

Peak # 3: (R) or (S)-1-methylheptil acetate

Figure S2. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_006.

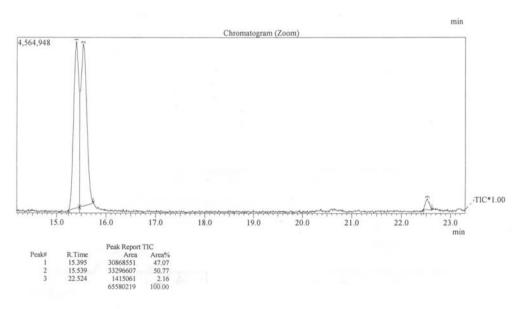

Peak # 1: (*R*) or (*S*)-2-octanol Peak # 2: (*R*) or (*S*)-2-octanol

Figure S3. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_007.

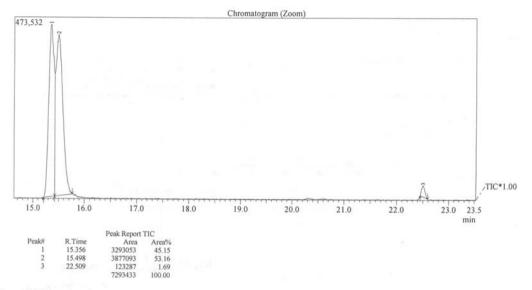

Peak # 1: Reaction By-product Peak # 2: (*R*) or (*S*)-2-octanol Peak # 3: (*R*) or (*S*)-2-octanol

Figure S4. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_014.

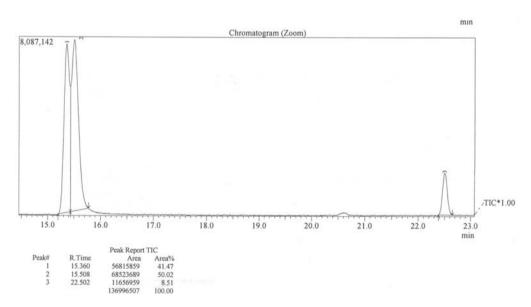

Peak # 1: (*R*) or (*S*)-2-octanol Peak # 2: (*R*) or (*S*)-2-octanol

Figure S5. GC-MS chromatogram of (R,S)-2-octanol resolution mediated by the isolate UEA_023.

Peak # 3: (R) or (S)-1-methylheptil acetate

Figure S6. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_027.

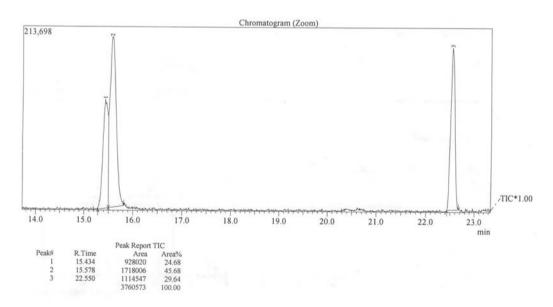

Peak # 1: (*R*) or (*S*)-2-octanol Peak # 2: (*R*) or (*S*)-2-octanol

Figure S7. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_041.

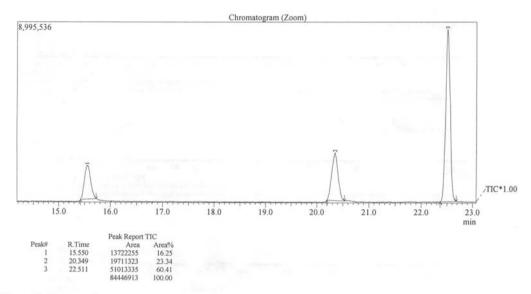

Peak # 3: (R) or (S)-1-methylheptil acetate

Figure S8. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_053.

Peak # 1: (*R*) or (*S*)-2-octanol Peak # 2: (*R*) or (*S*)-2-octanol

Figure S9. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the isolate UEA_115.

Figure S10. GC-MS chromatogram of (*R*,*S*)-2-octanol resolution mediated by the commercial enzyme Novozym 435.