## **Supplementary Information**

## Generation of Volatile Compounds from Carotenoids of *Dunaliella bardawil* Algae by Water Bath Heating and Microwave Irradiation

Natália A. B. Tinoco,<sup>a</sup> Thais M. Uekane,<sup>a</sup> Anna Tsukui,<sup>a</sup> Paula F. de Aguiar,<sup>a</sup> Cláudia M. L. L. Teixeira<sup>b</sup> and Claudia M. Rezende\*\*<sup>a</sup>

<sup>a</sup>Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro-RJ, Brazil

<sup>b</sup>Instituto Nacional de Tecnologia, 20081-312 Rio de Janeiro-RJ, Brazil



**Figure S1**. Chromatogram of volatile compounds present in *D. bardawil* biomass (BC2) obtained by GC-qMS. 1: β-cyclocitral; 2: α-ionone; 3: 7,8-dihydro-β-ionone; 4: *trans*-geranyl acetone; 5: 5,6-epoxy-β-ionone; 6: β-ionone; 7: dihydroactinidiolide.

<sup>\*</sup>e-mail: claudia.rezendeufrj@gmail.com



**Figure S2**. Response surface in absolute area obtained by GC-MS (SIM) for (a)  $\alpha$ -ionone; (b)  $\beta$ -ionone; (c)  $\beta$ -cyclocitral as a function of temperature and time in a DVB/CAR/PDMS SPME fiber.

(b) (a) β-cyclocitral α-ionone y = 401.729,2477x + 681.224,54927,50E+06 2,50E+07 y = 133.361,2798x - 204.656,2921 $R^2 = 0,9832$  $R^2 = 0,9894$ 6,00E+06 2,00E+07 **4,**50E+06 3,00E+06 **5** 1,50E+07 1,00E+07 1,50E+06 5,00E+06 0,00E+00 0,00E+00 12,0 15,0 80 100 120 140 160 6,0 9,0 18,0 20 60 Concetration (ng mL -1) Concentration (ng mL-1) (c) (d) α-ionone β-cyclocitral 5,E+05 8,E+05 Residue 2,E+05 -1,E+05 3,E+05 -2,E+05 100 120 140 160 -4,E+05 -7,E+05

**Figure S3.** Calibration curves and residual plots for  $\beta$ -cyclocitral (a and c) and  $\alpha$ -ionone (b and d), obtained by GC-qMS (SIM).

-1,E+06

Concentration (ng mL -1)

-7,E+05

Concentration (ng mL -1)



**Figure S4.** Typical chromatographic profile of *D. bardawil* biomass by HPLC-UV (460 nm). Lutein (1); chlorophyll b (2); chlorophyll a (3);  $\beta$ -carotene (4).



**Figure S5.** Response surface of the concentration of: (a)  $\beta$ -cyclocitral BU; (b)  $\beta$ -cyclocitral MW; (c)  $\alpha$ -ionone BU; (d)  $\alpha$ -ionone MW; (e)  $\beta$ -ionone BU; (f)  $\beta$ -ionone MW; (g) total carotenoids WB; (h) total carotenoids MW as a function of temperature and time employed for degradation of carotenoids from *D. bardawil*.

**Table S1.** Concentration (ng mL<sup>-1</sup>) of the major volatile compounds produced on the conditions of the central points from MW and WB experiments

| Volatile compound | Concentration / (ng mL <sup>-1</sup> ) |                   |
|-------------------|----------------------------------------|-------------------|
|                   | MW (1.5 min)                           | WB (45 min)       |
| β-Cyclocitral     | $4.46\pm0.34$                          | $12.83 \pm 0.11$  |
| α-Ionone          | $5.37 \pm 0.85$                        | $15.27 \pm 0.17$  |
| β-Ionone          | $67.56 \pm 0.57$                       | $115.67 \pm 0.63$ |

MW: microwave irradiation; WB: water bath heating.