Recuperation of simple sugars from Pretreatment of palm oil mesocarp fibre using acetic acid solution.

Fábio G. Marinho (PG), <u>Ione L. S. Almeida</u> (PQ), Ricardo R. Soares (PQ)*. * rrsoares@ufu.br Universidade Federal de Uberlândia, Instituto de Química.

Av. João Naves de Ávila, 2.121, Campus Santa Mônica, Bloco 1K, CEP: 38400-902, Uberlândia, Minas Gerais.

Palavras chave: Pré-tratamento, Ácido acético, fibra do mesocarpo da palma.

Abstract

The recuperation of simple sugars was carried out under conditions laid down by the fractional factorial design 2^{4-1} followed by a central composite design 2^2 (CCD). The results show that higher temperatures favor the formation of degradation products and that the best condition to obtain high sugar concentrations was achieved using temperature of 160 °C and 5.4% v/v of acetic acid solution.

Introdução

Os resíduos agrícolas são os recursos mais abundantes na terra. Pesquisadores do mundo inteiro vem buscando novas tecnologias para transformação desta biomassa lignocelulósica, e, a hidrólise utilizando ácido diluído tem sido um dos métodos mais estudados¹. Ácidos inorgânicos, atualmente são os mais usados no processo. No entanto, a utilização de ácidos orgânicos apresenta algumas vantagens como eficiência hidrolítica e baixa formação de produtos de degradação^{2,3}. Diante do exposto, o presente trabalho teve como obietivo a recuperação de acucares simples através do pré-tratamento da fibra do mesocarpo da palma (FMFP) com solução aquosa de ácido acético. O trabalho foi realizado com base em um planejamento fatorial fracionário 2⁴⁻¹, seguido de um delineamento composto central 2² (CCD) com três réplicas do ponto central. No CCD foram analisados os efeitos de temperatura (T: 140-180 °C) e concentração de ácido acético (AC: 3,0-5,0 % v/v). Fixou-se as variáveis tempo (37,5 min) e razão sólido/líquido (0,004 g mL⁻¹). O alfa ortogonal utilizado no delineamento foi $-\alpha$: -1,41421; + α : +1,41421. Utilizou-se um reator tipo batelada pressurizado com argônio. De acordo com a temperatura foi utilizada uma pressão inicial visando atingir a pressão final de 20 bar. Após o prétratamento, o conteúdo do reator foi filtrado e a fração líquida analisada em cromatógrafo líquido (Shimadzu), equipado com coluna Supelcogel C-610H. Rendimentos de xilose (X), arabinose (A) alicose (G), furfural (F) e Hidroximetilfurfural (HMF) foram as variáveis resposta. O software Statística 7.0 foi usado para análise dos dados.

Resultados e Discussão

De acordo com quadro 1, a maior liberação de glicose ocorreu no ensaio 8 (10,57 %), quando a FMFP foi pré-tratada com 5,4% (v/v) de AC e T de

160 °C. Os teores de xilose e arabinose foram identificados na maioria dos ensaios, sendo encontrados em maior quantidade nos ensaios 3 (xilose: 6,73%; arabinose: 0,52%), ensaio 4 (xilose: 6,30%; arabinose: 0,55%) e ensaio 8 (xilose: 1,94%; arabinose: 8,20%). As condições experimentos foram (T: 180 °C, CA: 3.0 % v/v), (T: 180 °C, CA: 5,0 % v/v) e (T:160 °C, CA: 5,4%) respectivamente. O furfural e o HMF foram encontrados em quase todas amostras, exceto no ensaio 5. Observou-se que temperaturas elevadas favorecem a formação de ambos produtos, o que está de acordo com o descrito por Chiaramonti et al. (2012).

Quadro 1. Teores (%) de glicose, xilose, arabinose, furfural e HMF nas frações líquidas obtidas após o pré-tratamentos da FMFP com ácido acético.

Ensaio	G	Х	Α	F	HMF
1	4,61	0,78	1,32	0,001	0,003
2	2,61	0,21	0,76	0,003	0,004
3	6,81	6,73	0,52	0,220	0,580
4	-	6,30	0,55	0,190	0,550
5	-	-	1,44	-	-
6	-	3,48	2,23	0,300	1,060
7	-	3,90	0,87	0,016	0,049
8	10,57	1,94	8,20	0,040	0,085
9	4,30	3,64	0,89	0,020	0,420
10	-	3,90	3,71	0,010	0,029
11	8,90	2,73	3,35	0,015	0,043

Conclusões

A partir dos resultados, podemos concluir que o prétratamento da fibra do mesocarpo do fruto da palma utilizando ácido acético, pode ser, uma alternativa promissora para a transformação desse resíduo em produtos de valor agregado.

Agradecimentos

À BIOPALMA pelo fornecimento da fibra do fruto da palma, FAPEMIG e CAPES-PNPD 2957/2011.

¹ Zhao, X; Wang, L.; Lu, X.; Zhang, S. *Bior. Technol.*. **2014**, 158, 12.
²Qin, L.; Liu, Z. H.; Li, B.Z.; Dale, B. E.; Yuan, Y. J. *Bioresour. Technol.* **2012**, 112, 319.

³Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., Sanders, J. P. M. *Biochem. Eng. J.* **2009**, 46, 126.

⁴Chiaramonti, D.; Prussi, M.; Ferrero, S.; Oriani, L.; Ottonello, P.; Torre, P.; Cherchi, F. *Biom. bioen.* **2012**, 46, 25.