Chemical constituents of *Xylopia excellens* (ANNONACEAE).

Danielle C. de Alencar^{1,*} (PG), Felipe Moura Araújo da Silva^{1,2} (PG), Richardson A. de Almeida^{1,2} (PG), Maria Lúcia B. Pinheiro¹ (PQ), Afonso Duarte Leão de Souza¹ (PQ), Emmanoel Vilaça Costa¹ (PQ), Dácio M.Medonça² (PQ),Hector H. F. Koolen^{2,3} (PQ), Lívia M. Dutra⁴ (PG), Andersson Barison⁴ (PQ) *dcquimica@yahoo.com.br

¹Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas,69077000 Manaus-AM, Brasil,, ²Centro de Biotecnologia do Amazonas, 69075-351, Manaus-AM, Brasil, ³Universidade do Estado do Amazonas,69050010, Manaus-AM Brasil, ⁴Departamento de Química, Universidade Federal do Paraná,81531990, Curitiba-PR,Brasil.

Keywords::Annonaceae; ent-Kaurene diterpenes; alkaloids; Xylopia excellens

Abstract

In the present study we report the isolation of two new ent-kaurene diterpene glycosides (1-2) and eleven isoquinoline alkaloids and their derivatives, from *Xylopia excellens* (Annonaceae): one benzyltetrahydroisoquinoline (3), two aporphines (4-5), eight oxoaporphines (6-13).

Introduction

Xylopia excellens (Annonaceae) is an amazon plant "envireira". Previous commonly known as phytochemical and pharmacological investigation on Xylopia species revealed the presence of several bioactive compounds^{1,2}. Phytochemical study of the leaves and stems of Xylopia excellens afforded two new ent-kaurene diterpene glycosides named entkaur-16-en-7 β -D-glucose (1) and ent-kaur-16-en-7 β -D-galactose (2) and eleven alkaloids were isolated, and characterized as reticuline(3) (benzyltetrahydroisoquinoline), anonaine (4) and nornantenine (5) (aporphines), liriodenine **(6**), lysicamine (7), isomochastoline (8), oxoglaucine (9), O-methylmoschatoline (10), lanuginosine (11), oxonatenine (12)and oxophoebine (13)(oxoaporphines). All structures were identified through 1D and 2D NMR techniques along with mass spectrometry and by comparison with literature.

Resultados e Discussão

The powdered air-dried leaves and stems of *X*. *excellens* was extracted successively with hexane and MeOH. The hexane extract (5 g) was partitioned with hexane/10% aqueous metanol (1:1), yielding the hydroalcoholic fraction (1.7g). This fraction was supported over silica gel and eluted initially with n-hexane, followed by a gradient of EtOAc and methanol, yielding **1** and **2**. The MeOH extract of the leaves and stems were redissolved in CHCl₃ and subjected to extraction with 3% aqueous HCI. This aqueous solution was adjusted with NH₄OH_{conc.} to pH 10, and extracted with CHCl₃ to yield CHCl₃ alkaloid fraction ³. The alkaloidal fraction *39^a Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender*

of the leaves (100 mg) was subjected to purification by HPLC-DAD in semi-preparative scale, using a C18 semi-preparative column eluted with methanol / water with 5% (v / v) trifluoroacetic acid in the proportion of 80:20, flow 5 mL / min and detection at $UV_1\mbox{=}280\mbox{nm}$ and $UV_2\mbox{=}305$ nm affording three alkaloids (3,4 and 9). The alkaloidal fraction of the stems (100 mg) was subjected to purification by HPLC-DAD in semi-preparative scale, the conditions were the same described previously, yielding six fractions. These subfractions were subjected to a new purification by HPLC-DAD, using a phenyl-hexyl semiprep column eluting with methanol/water with 5% (v/v) trifluoroacetic acid in the proportion of 60:40 flow of 5 ml/min and the wavelengths used were the same as described, yielding (5, 6, 7, 8, 10, 11, 12 and 13). Compounds 1-2 were reported for the firist time in the literature. Compounds 3-13 were reported for the first time in this species. These class of compounds are very common in species of the genus Xylopia.⁴

Figura 1. Isolated chemical constituents of *Xylopia* excellens

Conclusões

This is the first report of the chemical composition of *Xylopia* excellens. The results of this study contribute to the chemotaxonomic knowledge of the family and stimulate the continuation of investigations of this species for the identification of bioactive compounds.

Agradecimentos

CAPES,CNPq and FINEP for the financial support

- ¹Quintans JSS, Soares BM, Ferraz RPC, Oliveira ACA, Silva TB, Menezes LRA, Sampaio MFC, Prata APN, Moraes M, Pessoa C, Antoniolli A, Costa E, Bezerra D. *Planta Medica* 2013, 79: 123-130.
- ²Nishiyama Y, Moriyasu M, Ichimaru M, Iwasa K, Kato A, Mathenge SG, Chalo-Mutiso PB, Juma FD. Phytochemistry 2006, 67: 2671-2675.

³Chang, F. R., Wei, J.L., Teng, C. M., Wu, Y.C., Phytochemistry. 1998,

49, 2015.
⁴ Moreira IC, Roque NF, Vilegas W, Zalewski CA, Lago JHG, Funasaki M. Chemistry & Biodiversity 2013, 10: 1921-1943.