Goiânia – 2016

Analysis of Polyphenolic compounds of *Stryphnodendron adstringens* (Barbatimão) by MALDI-TOF mass spectrometry

Daniel P. Demarque¹ (PG), Denise B. da Silva² (PQ), Carlos A. Carollo² (PQ), Norberto P. Lopes^{1*} (PQ)

npelopes@fcfrp.usp.br

1 Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil; 2 Laboratório de Produtos Naturais e Espectrometria de Massas, Universidade Federal de Mato Grosso do Sul, Campo Grande-MS, Brazil.

Palavras Chave: Mass spectrometry, Barbatimão, Fragmentation reactions, Tannin, Proanthocyanidins

Abstract

This work presents chemical analysis of Barbatimão polyphenolic compounds by MALDI-TOF mass spectrometry.

Introduction

Sthryphnodendron adstringens, known in Brazil as Barbatimão, is a specie used in ulcer and healing skin treatment. The biological activity of this plant is assigned to the phenolic chemicals present in its bark. The chemical analysis of this molecules is complex, once traditional LC-MS using electrospray ionization is ineffective to separate and to ionize the polyphenols. In this work, it was applied MALDI-TOF to analyze fractions rich in tannin obtained from the classical chromatography from crude ethanolic extract of Barbatimão's bark.

Results and Discussion

It was identified four series of tannin (Table 1). The structures was confirmed by successive fragmentations by retro-Diels-Alder reaction¹ followed by the procyanidin (PCY) loss. Figure 1 shows the MALDI-TOF mass spectra and the RDA and the remaining unit fragmentation. The molecule in Figure 1 represents the series 1. The other series have an extra oxygen in the last three units.

Figure 1. MALDI spectra and successive fragmentation loss of 136 Da and 152 Da.

Table 1. Polyphenols identified in Barbatimão.			
Series	[M+Na]⁺	MF	Compound
1	899.1956	C45H38O18Na	3PCY
	1041.1980	C ₅₃ H ₄₆ O ₂₁ Na	
	1177.2185	C60H50O24Na	4PCY
	1329.2093	C68H58O27Na	
	1465.2312	C75H62O30Na	5PCY
	1617.2280	C83H70O33Na	
	1753.2600	C ₉₀ H ₇₄ O ₃₆ Na	6PCY
2	905.1964	C ₄₅ H ₃₈ O ₁₉ Na	3-Oxo-PCY
	1057.1923	C53H46O22Na	
	1193.2191	C ₆₀ H ₅₀ O ₂₅ Na	4-Oxo-PCY
	1345.2004	C68H58O28Na	
	1481.2207	C75H62O31Na	5-Oxo-PCY
	1633.2168	C ₈₃ H ₇₀ O ₃₄ Na	
	1769.2432	C90H74O37Na	6-Oxo-PCY
3	921.1828	C45H38O20Na	3-2Oxo-PCY
	1073.1784	C53H46O23Na	
	1209.2045	C60H50O26Na	4-20xo-PCY
	1361.1947	C68H58O29Na	
	1497.2157	C ₇₅ H ₆₂ O ₃₂ Na	5-20xo-PCY
	1649.2054	C83H70O35Na	
	1785.2363	C ₉₀ H ₇₄ O ₃₈ Na	6-20xo-PCY
4	937.1599	C ₄₅ H ₃₈ O ₂₁ Na	3-30xo-PCY
	1089.3472	C53H46O24Na	
	1225.1906	C60H50O27Na	4-30xo-PCY
	1377.1858	C68H58O30Na	
	1513.1898	C75H62O33Na	5-30xo-PCY
	1665.1920	C83H70O36Na	
	1801.5481	C90H74O39Na	6-30xo-PCY

This work shows the potential of MALDI to analyze this class of polyphenols. This strategy doesn't require the compounds isolation to identify the units, which can be identify monitoring successive RDA fragmentation followed by the unit loss². In addition, poor chromatography resolution and ionization doesn't exist as in LC-MS using EI ionization, once it can be analyzed in mixture by MALDI.

Conclusions

This work evidences an important use of MALDI-TOF mass spectrometry to develop studies that comprise this class of molecules in phenolic-rich plant species. This technique allowed the identification of 4 series of tannins and the procyanidin unit.

Acknowledgements

FAPESP (2014/18052-0).

¹ Demarque, D. P.; *et. al.*. *Natural Products Reports*. In press. ² Guaratini, T; *et. al.* J. *Mass Spectrom*. **2014**, 49, 251–255.

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender