Adsorção de íons de Cobre(II) em Quitosana e em Lauroil Quitosana

<u>Camilla L. Vieira</u> (PQ), Guilherme M. Duarte¹ (IC), Matheus Henrique F. Rodrigues¹ (IC), Roberta Signini^{1*} (PQ).

¹Universidade Estadual de Goiás - Campus de Ciências Exatas e Tecnológicas Anápolis-Goiás, Brasil

Palavras Chave: quitosana, lauroil quitosana, cobre(II), isotermas de adsorção.

Abstract

Adsorption of copper (II) ions in chitosan and lauroyl chitosan. The isotherms of Langmüir, Freundlich and Temkin were used to analyze the adsorption of copper(II) on chitosan and lauroyl chitosan.

Introdução

Efluentes industrias possuem grande concentração de metais pesados, que são substâncias tóxicas e não compatíveis com a maioria dos tratamentos biológicos de efluentes existentes1. É crescente a necessidade de tratamentos alternativos para eliminar metais pesados em efluentes que tenham baixo custo e boa viabilidade. A adsorção pode ser um desses tratamentos, principalmente quando os metais se encontram em pequenas quantidades. Um material que pode ser usado como adsorvente em processos de adsorção de metais pesados é a quitosana e seus derivados². A capacidade da quitosana e seus derivados em complexar metais é devido à presença de grupos amino (-NH2) e aos grupos hidroxilas (-OH) que estão presentes em sua estrutura². Neste trabalho foi utilizado quitosana e um derivado obtido a partir da guitosana com cloreto de lauroíla - o lauroil quitosana - para estudar a adsorção de íons de cobre(II) utilizando isotermas de adsorção (Langmüir, Freundlich e Temkin).

Resultados e Discussão

Na Tabela 1 são apresentados os parâmetros obtidos das isotermas de adsorção. Os valores de capacidade máxima de adsorção (q_{max}) obtidos para os adsorventes foram bons, mostrando que os mesmos apresentam boa afinidade com íons de cobre(II). Porém, observa-se que a modificação da quitosana em lauroil quitosana leva a valores menores de q_{max}. O valor do fator de equilíbrio (R_L) indica que o processo é favorável3. Fato que também é confirmado pelo parâmetro n da isoterma de Freundlich⁴. Os valores de calor de adsorção (b) para ambos os adsorventes foram positivos sugerindo que ocorre perda de energia durante o processo de adsorção, indicando que a adsorção é um processo exotérmico. Verificou-se a partir da análise dos coeficientes de correlação que o melhor modelo que representa o processo de adsorção foi o de Langmüir.

Tabela 1: Parâmetros obtidos a partir das isotermas de adsorção de Langmüir, Freundlich e Temkin.

do adocição do Ediiginaii, i rodinaiion o Tomain.			
Isotermas	Parâmetros	Adsorventes	
		Quitosana	Lauroil
			quitosana
Langmüir	q _{max} (mg g ⁻¹)	95,4	69,7
	K _L (L mg ⁻¹)	0,28	0,22
	R_L	0,03	0,04
	R ²	0,97641	0,97077
Freundlich	K _F (L g ⁻¹)	23,2	18,9
	n	2,0	2,8
	R ²	0,95432	0,95791
Temkin	Вт	20,4	13,2
	b⊤ (J mol⁻¹)	121,6	187,7
	K⊤ (L g ⁻¹)	2,98	1,08
	R ²	0,95493	0,95969

Conclusões

A partir dos estudos de adsorção observou que a quitosana e o lauroil quitosana apresentaram um q_{max} de 95,4 e 69,7 mg g⁻¹, respectivamente, sugerindo que os adsorventes possuem boa afinidade com íons de cobre (II). A partir do parâmetro n da isoterma de Freundlich e RL da isoterma de Langmüir sugere que o processo de adsorção é favorável. Pela isoterma de Temkin observa-se que o processo de adsorção foi exotérmico. O modelo que melhor descreve o processo de adsorção, independentemente do adsorvente, é a Isoterma de Langmüir. resultados de adsorção sugerem que ambos os adsorventes podem ser utilizados em tratamento de efluentes contendo íons de cobre(II). Porém a quitosana apresentou um valor maior de q_{max} que o lauroil quitosana, sugerindo que a quitosana seria um melhor adsorvente para íons de cobre(II).

Agradecimentos

Á CAPES e a FAPEG pelo apoio financeiro.

^{*}email: roberta.signini@ueg.br

¹TCHOUNWOU, P.B, YEDJOU, C.G, PATIOLLA, A.K, SUTTON, D.J. *Molecules.* **2012**, 101, 133-164.

² KYZAS, G.Z.; DELIYANNT, E.A Molecules. 2013, 18, 6193.

 $^{^3\}mathrm{DOTTO},$ G.; VIERA, M., GONÇALVES, J.; PINTO, L. Qu'imica Nova. $\mathbf{2011},$ 34(7), 97.

⁴YAN, H.; DAI, J.; YANG, Z.; YANG, H.; CHENG, R. Chem. Eng. J. **2011**, 174(2-3), 586.