Temperature influence on the synthesis of two new Hg(II) coordination polymers derived from Hg(TePy)₂

lago F. de Sá¹(IC), Carolina A. Araújo¹(IC), Eliandro Faoro¹(PQ)*, Ernesto S. Lang²(PQ), Davi F. Back²(PQ)

*eliandrofaoro@ufgd.edu.br

1 – Universidade Federal da Grande Dourados, Rodovia Dourados/Itahum, Km 12, Dourados-MS;

2 – Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Bairro Camobi, Santa Maria-RS

Key words: Hg (II) coordination polymers, crystal structure, bis-4-pyridyl ditelluride.

Abstract

Introduction

Coordination polymers are a class of compounds consisting of metal ions bonded together through multidentate organic ligands in order to form a polymeric chain. The compounds can grow from one to three dimensions. Those differences give them different properties and applications such as magnetism, photoluminescence, catalysis, molecular adsorption and sensing.^{1,2}

Results and Discussion

The oxidative addition of Hg^0 to the *bis*-4-pyridyl ditelluride (**1**)³ in DMF at room temperature led to the formation of mercury (II) *bis*(4-pyridyltelluride) followed by the addition of $HgCl_2$ leading to the formation of compound **3** (Scheme 1). Then PR_2R' was added and polymer **4** was formed (Figure 1).

Hg ⁰ DMF/25 °C
2 HoCh
$ Hg^{0} \rightarrow [Hg(Py)_{2}]_{n} \xrightarrow{2 HgCl_{2}} \{[(R'R_{2}P)HgCl_{2}Py]_{2}Hg\}_{n} $ $ DMF/60 \ ^{\circ}C \ 5 \ 6$

Scheme 1: Synthetic routes used to obtain compounds **4** and **6**. $PR_2R' = P(^tBu)_2(PhNMe_2)$.

Figure 1. Polymeric structure of compound 4.

When the *bis*-4-pyridyl ditelluride was carried out ³dos Sa with Hg⁰ at 60 °C, the reductive elimination of ³Chem. 39^a Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

tellurium and oxidative addition of Hg^0 was observed, forming the adduct $[Hg(Py)_2]_n$ (5). With further addition of two equivalents of $HgCl_2$ and PR_2R' polymer **6** (Figure 2) was obtained.

Figure 2. Polymeric structure of compound 6.

The compounds **4** and **6** show a zigzag arrangement. Selected bond distances and angles are listed in Table 1.

 Table 1. Selected bond distances (Å) and angles (°)

 for polymers 4 and 6.

4	6
Te1-Hg1 = 2.691	C11-Hg1 = 2.078
Hg1-Cl1 = 2.570	C11'-Hg1 = 2.078
Hg1-P1 = 2.486	Hg1…Cl1' = 3.532
Hg1…N14' = 2.458	Hg1…Cl2' = 3.299
Te1-Hg1-P1 = 123.75	C11-Hg1-C11' = 180
Te1-Hg1-Cl1 = 113.84	Cl1'…Hg1…Cl2' = 180
Te1-Hg1-N14' = 101.06	(') = 1 - x, -y, 1 - z
(') = $0.5 + x$, $1.5 - y$, $1 - z$	('') = 2 - x, -y, 1 - z

Conclusion

Two new coordination polymers based on the $Hg(PyTe)_2$ were synthesized and characterized using different spectroscopic techniques and X-ray crystallography. It was observed that the reaction temperature is a decisive factor for the synthesis of these compounds.

Acknowledgments

This work was supported with funds from CNPq, CAPES, Fundect and UFGD.

¹Ghasempour, H.; Tehrani, A. A.; Morsali, A. Ultrason. Sonochem. **2015**, *27*, 503.

²Malecki, J. G.; Palion, J.; Oboz, M.; Gron, T. *Polyhedron*, **2014**, *7*, 81.

³dos Santos, S. S.; Cabral, B. N.; Abram, U. Lang, E. S. *J. Organomet. Chem.* **2013**, *723*, 115.