Synthesis and anti-tubercular activity of 2-[Ar-CH=N-NR-CO(CH2)n]thiophene and 2-(Ar-CH=N-NH-CO)furan derivatives

Laura N. de F. Cardoso^{1,2}(PG), <u>Thais C. M. Nogueira</u>¹(PQ), Carlos R. Kaiser²(PQ), Marcus V. N. de Souza^{1,2,*}(PQ).

¹ FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil.

² Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68563, 21945-970, Rio de Janeiro, RJ, Brazil.

*marcos_souza@far.fiocruz.br

Palavras Chave: Thienyl, furanyl, acyl hydrazones.

Abstract

The synthesis and anti-tubercular activity of the new thienyl and furanyl derivatives are reported.

Introdução

Thiophene and its derivatives have been well studied as materials, *e.g.*, in applications in organic electronics and photonics^{1,2} and in the medical area. In the medical area, the thiophene nucleus is present in many natural and synthetic products having a wide range of pharmacological activities, such as antiviral, anticancer, antibacterial, antifungal, and anti-inflammatory agents³.

Due to the promising anti-TB activities of acetamido derivatives, 1^{4-6} and more recently acetohydrazide derivatives of thiophene, 2^7 , we have followed up this study with work on further acylhydrazonyl derivatives of thiophene **3** and **6**, and in addition, on a series of furanyl compounds **4**, see Scheme 1.

Resultados e Discussão

The synthesis of the compounds, **3** or **4**, were achieved by reactions of arylaldeydes with **8**, generated from methyl thiene-2-carboxylate or methyl furan-2-carboxylate, respectively. Methylation of $\mathbf{2}^7$ and **3** by methyl iodide produced **6**, respectively, see Scheme 1. All compounds were characterized by HRMS, IR and NMR spectroscopy and tested against *M. tuberculosis*, see Table 1.

Scheme 1. Reagents and conditions: (*i*) SOCl₂, MeOH, 0°Cr.t., 24h, 98-100%; (*ii*) N₂H₄.H₂O (55%), EtOH, 80°C, 2-18h, 75-80%; (*iii*) EtOH, RCHO, r.t, 1-72h, 40-97%; (*iv*) a: acetone, K₂CO₃, r.t., 30 min, b: CH₃I, 40°C, 2-24h, 65-89%.

(ATTC27294) obtained 7.			
Compound	MIC (µM)	Compound	MIC (µM)
3a (R=5-O ₂ N-thien-2-yl)	Insol.	4b (R= 5-O ₂ N-furan-2-yl)	100.3
3b (R=5-O ₂ N-furan-2- yl)	Insol.	4c (R=pyridin-2-yl)	Inact.
3c (R=pyridin-2-yl)	108.2	4d (R=2-HOC ₆ H ₄)	Insol.
3d (R=2-HOC ₆ H ₄)	Insol.	4e (R=4-HOC ₆ H ₄)	Inact.
3e (R=4-HOC ₆ H ₄)	404.8	4f (R=2,3(HO) ₂ C ₆ H ₃)	Inact.
3f (R=2,4-(HO) ₂ C ₆ H ₃)	380.2	4g (R=2-HO-4-MeC ₆ H ₃)	Insol.
3g (R=3,4-(HO) ₂ C ₆ H ₃)	Inact.	4h (R=2-HO-5-MeC ₆ H ₃)	Insol.
3h (R=2-HO-4-MeC ₆ H ₃)	Insol.	4i (R=2-HO-3-MeOC ₆ H ₃)	401.3
3i (R=2-HO-5-MeC ₆ H ₃)	Inact.	4j (R=2-HO-4-MeOC ₆ H ₃)	Insol.
3j (R=2-HO-3- MeOC ₆ H ₃)	180.5	4k (R= 4-HO-3-CIC ₆ H ₃)	Inact.
3k (R= 2-HO- 4MeOC ₆ H ₃)	Insol.	6a (R=5-O ₂ N-thien-2-yl)	10.5
3I (R= 2-HO-3- O ₂ NC ₆ H ₃)	171.2	6b (R= $5 \cdot O_2 N \cdot furan \cdot 2 \cdot yl$)	179.2
3m (R=2-HO-5- O ₂ NC ₆ H ₃)	Insol.	6c (R=pyridin-2-yl)	Inact.
3n (R=4-HO-3-CIC ₆ H ₃)	88.8	2a (R= 5-O ₂ N-thien-2- yl) ⁷	9.0
4a (R= 5-O ₂ N-thien-2- yl)	Insol.	$\mathbf{2b}(R=5\text{-}O_2N\text{-}furan\text{-}2\text{-}yl)^7$	8.5
Ethambutol	15.3	Isoniazide	0.46
^{a)} Ins = insoluble; ^{b)} Inact = inactive:>100µg/mL			

Table 1. Compounds studied and the results of biological activity against *M. tuberculosis* H37Rv (ATTC27294) obtained ^{a,b}.

¹⁾Ins = insoluble; ^{D)}Inact = inactive:>100µg/mL

Conclusões

The most active compounds against *M.* tuberculosis are **2a**, **2b** and **6**. Moderate activity was displayed by **4b** and certain derivatives of series **3** where aryl is an o-hydroxyphenyl derivative or pyridin-2-yl.

Agradecimentos

The authors would like to acknowledge CNPq and Fiocruz for financial and infrastructure assistance.

¹ Perepichka, I. E.; Perepicka, D. F. Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, 2 Volume Set, **2009**, John Wiley & Sons, Chichester, UK.

² Rasmussen, S. C.; Evenson, S. J.; McCausland, C. B. *Chem. Commun.* **2015**, *51*, 4528.

⁵ de Souza, M. V. N. et al. Phosphorus Sulfur 2008, 183, 2990.

39^ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

³ Saeed, S.; Rashid, D. N.; Ali, N.; Hussain, R.; Jones, P. G. Eur. J. Chem.2010, 1, 221.

⁴ de Souza, M. V. N. et al. Lett. Drug Des. Discov. 2008, 5, 221.

⁶ Lourenço, M. C. S. et al. Bioorg. Med. Chem. Lett. **2007**, 17, 6895.

⁷ Cardoso, L.N. F. et al. Arch. Pharm. Chem. Life Sci. 2014, 347, 432.