Estudo comparativo da passivação do aço AISI 304-L com ácido sulfúrico e com ácido nítrico.

Fábio B. Mimura¹(IC), Fernando H. C. Jesuz²(IC), Kaique J. B. Alves ²(IC), Mauricio M. P. Silva^{*}(PQ), Victor M. S. Pereira¹(IC), Victor S. Pinheiro²(IC).

Palavras Chave: Passivação, Ácido sulfúrico, 304-L.

Abstract

Comparative study of passivation of AISI 304-L steel with sulfuric acid and with nitric acid.

The study compares the resistance of passive layer formed in 304-L steel passivated with nitric acid and sulphuric acid.

Introdução

A resistência à corrosão dos aços inoxidáveis se deve ao processo de passivação, que se dá basicamente pela formação espontânea de um filme fino sobre a superfície (camada passiva). Tal camada é rica em óxido de cromo e tem a função de proteger a superfície do aço contra os diversos processos corrosivos¹. Pesquisadores buscam cada vez mais por tipos de passivação que forneçam uma camada protetora mais resistente, uniforme e espessa². Neste sentido, este trabalho teve por objetivo comparar a resistência da passivação do aço AISI 304-L feita em solução de ácido nítrico 40% (v/v)³ e em solução de ácido sulfúrico 0,50 mol.L-¹ (15%), ambos passivados por 30 minutos, em meios de ácido clorídrico (0,10 mol.L-¹ até 0,70 mol.L-¹)

Resultados e Discussão

Os ensaios foram realizados de acordo com o fluxograma a seguir.

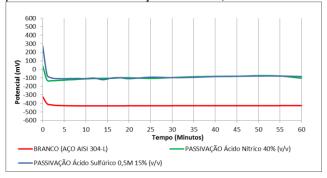

Na tabela 1, mostram-se os resultados de potencial de corrosão (Ecorr) obtidos a partir dos potenciais de circuito aberto (Eca) após 60 minutos, com placas de aço AISI 304-L quando sem passivação, quando passivadas com HNO₃ 40% (v/v) e quando passivadas com H₂SO₄ 0,5 mol.L⁻¹ (15%), imersas em soluções de ácido clorídrico em diferentes concentrações. O gráfico 1 mostra que quando passivadas com H₂SO₄, resistiram ao meio corrosivo de HCI 0,30 mol.L⁻¹, da mesma forma que quando passivadas com HNO₃.

Tabela 1. Valores de potencial de corrosão (mV/ECS) para o aço AISI 304-L em meios corrosivos de HCI.

HCI (mol.L ⁻¹)	Sem Passivação	Passivação em HNO ₃ 40% (v/v)	Passivação em H₂SO₄ 0,5 mol.L ⁻¹ (15%)
0,10	-193 ± 1	-111 ± 4*	-90 ± 10
0,30	-425 ± 4	-143 ± 82*	-180 ± 95
0,50	-427 ± 3	-105 ± 8*	-428 ± 4
0,70	-405 ± 3	-427,5 ± 0,5*	N/A

*PINHEIRO, V. S. et al - 38a RA SBQ/2015.

Gráfico 1. Potenciais de circuito aberto (mV/ECS) por 60 minutos em solução de HCI 0,30 mol.L⁻¹.

Conclusões

Para o aço AISI 304-L, a solução passivante de H_2SO_4 0,50 mol. L^{-1} (15%) forma uma camada passiva menos resistente do que a formada pela solução de ácido nítrico 40% (v/v), para HCI 0,50 mol. L^{-1} , fato evidenciado por valores mais positivos de Ecorr para quando passivado com HNO₃ em comparação a passivado com H_2SO_4 e a não passivado.

Agradecimentos

Fundação Educacional João Ramalho. Faculdade São Bernardo (FASB).

¹Departamento de Engenharia Química (FASB); ²Departamento de Química (FASB)

^{*}mauricio.margues@fasb.com.br

¹ SCHMUKI, P. From Bacon to barriers: a review on the passivity of metals and alloys. Journal of Solid State Electrochemistry, v. 6, n. 3, p. 145-164, 2002.

² LILLARD, R. S.; VASQUEZ, G.; BAHR, D. F. The kinetics of anodic dissolution and repassivation on stainless steel 304L in solutions containing nitrate. Journal of The Electrochemical Society, v. 158, n. 6, p. C194-C201, 2011.
³ PINHEIRO, V. S. et al. Avaliação da passivação do aço AISI 304-L com

³ PINHEIRO, V. S. et al. Avaliação da passivação do aço AISI 304-L com ácido nítrico. In: ANAIS da 38ª REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE QUÍMICA, 2015, Águas de Lindoia. Disponível em: http://www.adaltech.com.br/testes/sbq2015/ Acesso em 20 jan. 2016.