# A Serine Peptidase Inhibitor (Serpin) from Gloeobacter violaceus

# Jocélia P. C. Oliveira<sup>1</sup> (PG), Lucas R. de Souza<sup>1</sup> (PG), Luciano Puzer<sup>1</sup> (PQ)\*

1 Centro de Ciências Naturais e Humanas, Bloco Delta - Universidade Federal do ABC – São Bernardo do Campo – SP.

\*lpuzer@yahoo.com.br

Keywords: Gloeobacter violaceus, bacterial serpin, protease inhibitor

### Abstract

Here we describe the inhibitory activity of serpin (Serine peptidase inhibitors) from *G. violaceus* that we named vioserpin.

### Introduction

The serpins (Serine peptidase inhibitors) belong to the I4 family of protease inhibitors and constitute a large family of proteins found in animals, plants and different microorganisms.<sup>1</sup> Serpins regulate a wide range of physiological processes including blood coagulation, complement activation, inflammation, extracellular matrix remodeling, and tumor suppression<sup>2</sup>, and their main characteristic is the inhibition of serine proteases.<sup>3,4</sup> Serpins are found in different bacterial strains<sup>5</sup>, but their functional importance for these microorganisms is not clear. Here we describe the biochemical characterization of a serpin from Gloeobacter violaceus and its capacity to inhibit trypsin interacting in the presence of glycosaminoglycans.

## **Results and Discussion**

The vioserpin showed specificity to inhibit trypsin by the formation of the covalent complex serpinpeptidase, demonstrated by SDS–PAGE analysis (Figure 1).



Figure 1. 10% SDS-PAGE Gel stained with coomassie blue. 1, Molecular weight standard; 2, Control not induced; 3, *E. coli* BL21(DE3) pET28Gv transformed at 20 h of induction; 4, induction pellet; 5, supernatant of induction; 6, Protein eluted with 200 mM imidazole. The complex formation: lanes 7 to 11, incubations vioserpin:trypsin ratio of 8:1; 4:1; 2:1; 1:1 and 1:2; lane 12, vioserpin control; lane 13, bovine trypsin; lane 14, Molecular weight standard.

The Stoichiometry of Inhibition (SI) for all inhibitory reactions was near 1 (Figure 2) and reactions of vioserpin with trypsin demonstrated rapid inhibition

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

with rate constant  $3.5 \times 10^5 \text{ M}^{-1}.\text{s}^{-1}$ , similar to that observed for reactions with glycosaminoglycans heparin, dermatan sulfate and chondroitin sulfate. It was observed that *k* value for the test in the presence of heparin had the highest value of second-order rate constant, almost 5 times the value of second-order constant,  $(15.0 \times 10^5 \text{ M}^{-1}.\text{s}^{-1})$ , while dermatan and chondroitin sulfate did not influenced the values of *k*.



**Figure 2.** SI for the vioserpin-trypsin interaction was determined by extrapolation of the  $[I]_0/[E]_0$  ratio ( $[I]_0$  - initial concentration of inhibitor;  $[E]_0$  - Initial enzyme concentration) with incubation of vioserpin-trypsin at different concentrations in absence (**A**) and in presence (**B**) of Heparin (1,0  $\mu$ M).

#### Conclusions

In conclusion, our study defined the specificity of a serpin found in *G. violaceus* bacteria to inhibit trypsin-like enzymes, and it presented an inhibitory potency similar to others serpins with specificity for trypsin.<sup>6,7</sup> We were also able to show that the inhibitory activity of vioserpin can be influenced by heparin.

#### Acknowledgments

This work was supported by FAPESP (Proc. 2012/00989-0 and Proc. 2013/10548-3).

<sup>&</sup>lt;sup>1</sup> Han, J.; Zhang, H.; Min, G.; Kemler, D.; Hashimoto, C. *FEBS Lett.* **2000**, *468*, 194.

<sup>&</sup>lt;sup>2</sup> Cooley, J.; Takayama, T. K.; Shapiro, S. D.; Schechter, N. M.; Remold-O'Donnell, E. *Biochemistry* **2001**, *40*, 15762.

<sup>&</sup>lt;sup>3</sup> Hunt, L. T.; Dayhoff, M. O. Biochem. Biophys. Res. Commun. 1980, 95, 864.

<sup>&</sup>lt;sup>4</sup>Bock, S. C.; Wion, K. L.; Vehar, G. A.; Lawn, R. M. *Nucleic Acids Res.* **1982**, *10*, 8113.

<sup>&</sup>lt;sup>5</sup> Irving, J. A.; Steenbakkers, P. J.; Lesk, A. M.; Op den Camp, H. J.; Pike, R. N.; Whisstock, J. C. *Mol. Biol. Evol.* **2002**, *19*, 1881.

<sup>&</sup>lt;sup>6</sup> Askew, Y. S.; Pak, S. C.; Luke, C. J.; Askew, D. J.; Cataltepe, S.; Mills, D. R.; Kato, H.; Lehoczky, J.; Dewar, K.; Birren, B.; Silverman, G. A. *J. Biol. Chem.* **2001**, *276*, 49320.

<sup>&</sup>lt;sup>7</sup> Djie, M. Z.; Stone, S. R.; Le Bonniec, B. F. *J. Biol. Chem.* **1997**, 272, 16268.