# Extração de arsênio por Sistemas Aquosos Bifásicos na ausência de extratante.

Roberta A. Carvalho<sup>1</sup>\*(PG), Jussara A. Penido<sup>1</sup> (IC), Leandro R. de Lemos <sup>2</sup>(PQ), Guilherme D. Rodrigues<sup>3</sup>(PQ), Aparecida Barbosa Mageste<sup>1</sup>(PQ). robertadealmeidac@gmail.com

<sup>1</sup>Universidade Federal de Ouro Preto, <sup>2</sup> Universidade Federal dos Vales do Jequitinhonha e Mucuri, <sup>3</sup> Universidade Federal de Minas Gerais.

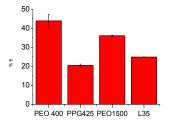
Palavras Chave: Arsênio, Sistema aquoso bifásico, PEO

## **Abstract**

Arsenic extraction by Aqueous Two-Phase System in the absence of extractants.

This study purposes a methodology based in the Green Chemistry principles for the Monomethylarsonic (MMA) extraction using Aqueous Two Phase System. The system compounded by PEO400-Na<sub>2</sub>SO<sub>4-</sub>H<sub>2</sub>O in pH 1 presented 67,36% of extraction efficiency.

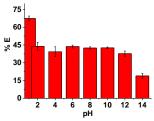
### Introdução


A presença de arsênio no ambiente pode ser devido à ocorrência natural, uma vez que o arsênio faz parte da composição da crosta terrestre ou por via antropogênica, através da exposição de íons metálicos ao meio ambiente em atividades industriais. O MMA (monometilarsônico) e o DMA (dimetilarsínico) são as principais formas orgânicas de arsênio presentes no meio ambiente <sup>(1)</sup>. Por ser altamente tóxico, ocasiona contaminação ambiental e de seres vivos.

Diante desta problemática, os Sistemas Aquosos Bifásicos (SAB) são uma alternativa simples, barata e ambientalmente segura para extração de arsênio. Apresentam a água como componente majoritário e podem ser compostos por dois polímeros, dois eletrólitos ou um polímero e um eletrólito. Sendo assim, no presente estudo foi investigado o efeito de diversos parâmetros do SAB sobre a eficiência de extração do MMA.

## Resultados e Discussão

A eficiência de extração em um SAB pode ser otimizada variando alguns parâmetros, tais como: pH, temperatura, composição e a presença/ausência de um agente extratante.


A figura 1 apresenta o efeito da massa molar e da hidrofobicidade do polímero sobre o comportamento de extração de MMA para sistemas formados por polímero-Na<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O.



**Figura 1**: Efeito da massa molar e hidrofobicidade do polímero na extração de MMA em pH 2.

Pode-se notar pela figura 1, que o polímero menos hidrofóbico e de menor massa molar (PEO 400) proporcionou melhor extração de As. Este aumento acontece porque em massas molares menores, é possível um maior número de configurações para o MMA na fase rica em polímero (2)

A Figura 2 mostra o efeito do pH sobre a porcentagem de extração (% E) do MMA no sistema PEO400-Na<sub>2</sub>SO<sub>4</sub>.H<sub>2</sub>O.



**Figura 2**: Efeito do pH na extração de MMA para o sistema: PEO400-Na<sub>2</sub>SO<sub>4-</sub>H<sub>2</sub>O

Conforme apresentado na figura 2, a maior porcentagem de extração foi obtida em pH 1, sendo este comportamento semelhante ao observado para outros sistemas estudados. Em pH <3,6 o MMA está carregado positivamente e interagirá com o polímero por interações dipolo-íon ou dipolo/dipolo. Já na faixa básica, a extração foi menor pois a molécula de arsênio está presente na forma aniônica, exercendo assim interações repulsivas com os segmentos de óxidos de etileno presentes no PEO, dificultando portanto a extração<sup>(2)</sup>.

#### Conclusões

Conclui-se que o SAB composto por: PEO400-Na<sub>2</sub>SO<sub>4</sub>.H<sub>2</sub>O, em pH 1 foi o mais eficiente para extração de MMA, mesmo sem o uso de um extratante. Logo, a metodologia torna-se ainda mais atrativa para aplicação. Estudos de efeito do sal formador do SAB e do comprimeto da linha de amarração ainda serão realizados, podendo aumentar ainda mais a eficiência de extração de As.

# Agradecimentos

RQ-MG, CNPq, FAPEMIG, CAPES

Talanta58.2002,pp. 77-96. Watt,C. e Chris Le, X.

<sup>&</sup>lt;sup>2</sup> Glyk, A.; Scheper, T.;Beutel, S. *J. Chem.Eng.Data* **2014**, 59 (3), pp 850–859.