Enzymatic Kinetic Resolution of Secondary Alcohols in a Homemade Continuous-Flow System

<u>Juliana C. Thomas</u> (PG)¹, Martha D. Burich (IC)¹, Pamela T. Bandeira (PG)¹, Alfredo R. M. de Oliveira (PQ)¹, Leando Piovan* (PQ)¹

¹ Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil

* lpiovan@quimica.ufpr.br

Keywords: continuous-flow system, biocatalysis, secondary alcohols

Abstract

Optically active secondary alcohols were obtained via enzymatic kinetic resolution in a homemade continuous-flow system.

Introduction

Continuous-flow systems in biocatalysis offer some advantages, such as no degradation of enzyme support and, mainly, removing the product from the reaction media.¹ On the other hand, high costs of commercial equipment can be a prohibitive factor in the popularization of continuous-flow methods. However, anyone can build their own equipment, which implies in a significant cost reduction.² In this context, we report here the application of a homemade continuous-flow system in enzymatic kinetic resolution reactions of secondary alcohols.

Results and Discussion

Our continuous-flow system is shown in Figure 1.

Figure 1. Continuous-flow system

This system was applied to the enzymatic kinetic resolution of well-known lipase-substrates, alcohols **1-8**. Batch mode reactions were carried out in parallel to compare the results (Table 1).

A multigram scale reaction was also performed in order to evaluate the reproducibility of results and reuse of the biocatalyst. A solution of 2.0 g of alcohol **1** (0.1 mol L⁻¹) was eluted through the column at 1 mL min⁻¹ and it was collected 4 mL aliquots. It was not observed any decrease of conversion even after the elution of entire solution (Figure 2).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
		Flow				Batch			
Alcohol	Rate /	Time ^a / min	c / %	e.e. ^c / %		Time	c ^b / %	e.e. ^c	(<i>R</i>)-
1	min ⁻¹ 1.0	0.5	50	alcohol >99	ester >99	1	50	alcohol	ester >99
2	0.5	1	50	>99	>99	6	50	>99	>99
3	0.7	0.7	50	>99	>99	3	50	>99	>99
4	0.1 0.1 ^d	5 10	45 50	80 >99	>99 >99	9	50	>99	>99
5	0.1 <i>°</i>	5	48	92	98	2	50	>99	>99
6	0.1 <i>e</i>	5	51	99	95	1	50	>99	>99
7	0.1 <i>e</i>	5	50	98	98	1	50	>99	>99
8	0.1 <i>d,e</i>	10	57	>99	75	2	50	>99	>99

Reaction conditions: <u>Flow mode</u>: substrate (0.1 mmol mL⁻¹), vinyl acetate (0.4 equivalents) and *n*-hexane (5 mL) and Novozym 435[®] (200 mg); <u>Batch mode</u>: substrate (0.1 mmol), vinyl acetate (0.4 mmol), *n*-hexane (2 mL) and Novozym 435[®] (20 mg). Temperature for both 50 °C; ^a Residence time: reactor volume / flow rate; ^b Conversion: ee₈ / (ee₈ + ee₉); ^c Enantiomeric excess: $(R - S) / (R + S) \times 100$; ^a 2 cycles; ^a 100 mg of Novozym 435[®]

rac	nn A A
1 st cycle	
10 th cycle	
20 th cycle	
30 th cycle	
40 th cycle	
	1 st cycle 10 th cycle 20 th cycle 30 th cycle

Figure 2. Racemic mixture and reaction aliquots

Conclusion

The combination of our homemade continuous-flow system and biocatalysis was very successful, since all compounds were obtained with high optically purity (75 up to >99%) and reproducibility was very high.

Acknowledgements

CAPES, CNPq, Fundação Araucária and UFPR.

¹ Souza, R. O. M. A.; Miranda, L. S. M. *Rev. Virtual de Quim.* **2014**, *6*, 34.

² Kunz, U.; Turek, T. Belstein J. Org. Chem. 2009, 5 (70).

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender