Influência do indicador alaranjado de metila em parâmetros fisiológicos de *Ocimum sp*.

Yohanne Dangui Kreve (IC), Maria Vitória Schneider (IC), Keller Paulo Nicolini (PQ), <u>Jaqueline Nicolini</u> (PQ)*. jaqueline.nicolini@ifpr.edu.br

Instituto Federal do Paraná – IFPR – Av. Bento Munhoz da Rocha Neto, s/n, PR280, 85555-000, Palmas - PR.

Palavras Chave: Clorofila, monitoramento ambiental, indicador de pH.

Abstract

Influence of methyl orange indicator on the physiologic parameters of *Ocimum sp.* Plants watered with methyl orange solution showed significant physiologic response in levels of chlorophyll a and b.

Introdução

A alfavaca, o manjericão e o basílico são do gênero *Ocimum*. Neste trabalho estudou-se o basílico, planta medicinal utilizada para controle de problemas respiratórios, espasmos e infecções bacterianas. Os corantes azo são classificados como um grupo recalcitrante que traz vários problemas ambientais. O alaranjado de metila (ALM) é um indicador convencional de pH e pertence ao grupo dos corantes azo. Este trabalho objetivou monitorar a influência do indicador alaranjado de metila nos parâmetros fisiológicos de germinação, altura e taxas de clorofila a (Ca) e clorofila b (Cb) de *Ocimum sp.* (OC).

Resultados e Discussão

O desenvolvimento e o cultivo de OC foi monitorado durante 57 dias, de outubro à dezembro de 2015. Foram avaliados, em triplicata, os parâmetros fisiológicos de germinação, altura e taxas de Ca e Cb em dois sistemas de cultivo: 1) Amostras de OC regadas com água destilada (H2O) e 2) com solução aquosa do corante ALM, 1 x 10⁻⁵ mol L⁻¹. A taxa de germinação foi 2,47 % menor quando as plantas foram regadas com solução aquosa de ALM, quando comparadas às regadas com H₂O (87,78% e 90,00 %, respectivamente). Quanto às alturas (Tabela 1), as razões entre as amostras de OC regadas com ALM são relativamente menores que as plantas regadas com H₂O. Isso não se observa apenas em 22 e 52 dias de monitoramento, indicando flutuação assimétrica3, que pode ser devido a estresse fisiológico provocado pela contaminação com ALM. No entanto, quando analisados os espectros de ultravioleta visível (UV-VIS), observa-se que as bandas relativas a Ca (664,1 nm) e Cb (648,6 nm), bem como as bandas entre 400 e 500 nm relativas a carotenos e xantofilas (pigmentos acessórios), decrescem significativamente com o passar do tempo de cultivo e com as maiores concentrações de ALM, o que

reflete nas taxas de clorofilas calculadas e apresentadas na Tabela 2.

Tabela 1. Alturas de OC regadas com água e solução aquosa de ALM.

	t (em dias)				
	11	22	32	45	52
ALM	1,00 ±	1,45 ±	2,00 ±	2,27 ±	2,30 ±
	0,43	0,09	0,43	0,08	0,13
H ₂ O	0,92 ±	1,75 ±	2,2 ±	2,00 ±	2,35 ±
	0,85	0,35	0,99	1,41	0,92
Razão (%)	11,11	17,14	9,09	13,33	2,13

Tabela 2. Taxas de clorofila a e ba em OC

Período ^b (2015)	OC regada com água destilada				
Em dias ^c	C _a (µg mL ⁻¹)	C _b (µg mL ⁻¹)	Razão C _a /C _b		
1 – 15	45,3404	57,3770	0,7902		
16 – 29	21,8945	68,5120	0,3196		
30 – 43	24,0623	42,1353	0,5711		
44 – 57	23,7106	48,7572	0,4863		
Em dias	OC regada com solução aquosa de ALM (1x10 ⁻⁵ mol L ⁻¹)				
1 – 15	35,3196	58,7440	0,6012		
16 – 29	22,1067	36,2266	0,6102		
30 – 43	13,6234	20,0857	0,6783		
44 – 57	8,5198	11,3155	0,7529		

^aCalculadas a partir da Ref. 4. ^bOs dados expressam o monitoramento de OC durante 57 dias. ^cAs concentrações (em ppm) de ALM, foram de 1,572 entre 1-15 dias; 1,820 entre 16-29 dias; 2,123 entre 30-43 dias e de 2,371 entre 44-57 dias.

Conclusões

Os dados indicam que quando se analisa os parâmetros fisiológicos de germinação e altura de OC não há evidencias de que resíduos de ALM possam causar danos ao desenvolvimento da planta. Todavia, o monitoramento de Ca e Cb indica que há diferenças significativas nos sistemas de cultivo.

Agradecimentos

IFPR, CNPq-SETEC/MEC.

Simões, C.M.O.; Schenkel, E. P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. *Farmacnogosia: da planta ao medicamento.* **2003**. 5. Ed.

² Fan, J.; Guo, Y.; Wang, J.; Fan, M. J. Hazard. Mater. 2009, 166, 904.

³ Valkama, J.; Koslov, M.V. *J. Appl. Ecol.* **2001**, *88*, 665.

⁴ Lichtenhaler, H.K.; Buschmann, C.. Cur. Protocol. Food Anal., Chem.. **2001**, Supplementary Material, F.4.3.