# Towards the Total Synthesis of Actinoranone: Unexpected Domino Retro Friedel-Crafts Acylation and Esterification.

Luiz F. T. Novaes<sup>1</sup> (PG), Julio C. Pastre<sup>1,\*</sup> (PQ).

#### \*juliopastre@iqm.unicamp.br

1 - Universidade Estadual de Campinas (Unicamp), Lab I-224, Campinas-SP, Brazil

Key-words: Total Synthesis, Actinoranone, Friedel-Crafts Acylation, Domino Reactions, Esterification

Abstract

We report herein an unprecedented domino retro Friedel Crafts (FC) acylation and esterification of electron-rich tetralones, an indanone and a benzosuberone.

#### Introduction

Actinoranone (1) is a natural meroterpene with an unique scaffold, which displays cytotoxic activity.<sup>1</sup> This natural product was isolated from marine bacterium and there is no synthesis reported so far. In order to confirm the proposed structure of 1 and elucidate its stereochemistry, we designed a bioinspired retrosynthetic approach, which includes as a key fragment the ketal 2. For our surprise, after a concise synthesis of tetralone 6 (5 steps, 40% overall yield), a conventional protocol to synthesize a dioxolane ring induced completely a domino retro FC acylation and esterification to furnish ester 8 in 97% yield, an unprecedented transformation.







### **Results and Discussion**

After this unexpected outcome, we decided to explore the synthetic potential of this domino reaction. Firstly, the degree of methoxylation was investigated and tetralones **8**, **10** and **12** were evaluated. Compounds **8** and **10** containing less electron-rich aromatic rings did not undergo the retro FC reaction nor the ketalization. On the other hand, tetralone **12**, containing three methoxy groups, furnished the domino reaction product in 60% yield along 32% of the demethoxylated product **14**, which did not suffer the retro FC reaction. The size of the ring fused to the aromatic system was also evaluated: the bicycles containing a 5 and a 7 membered-ring (compounds **15** and **17**) were able to participate in a domino retro FC and esterification in high yields.

 Table 1. Domino retro FC acylation and esterification.



<sup>*a*</sup>Compounds **8** and **10** were obtained from commercial source, and compounds **6**, **12**, **15** and **17** were synthesized in 4-5 steps. <sup>*b*</sup>Isolated yield. <sup>c</sup>No reaction, recovery of starting material.

## Conclusions

We observed a new domino reaction en route to the total synthesis of actinoranone (1), involving a retro FC acylation and esterification. This reaction was studied with different bicycles, and work is now in progress to evaluate different alcohols and other nucleophiles.

### Acknowlegments

FAPESP and CAPES for financial support (#15/08199-6 and #14/26378-2).

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

<sup>&</sup>lt;sup>1</sup> Fenical, W. et al. Org. Lett. 2013, 15, 5400.