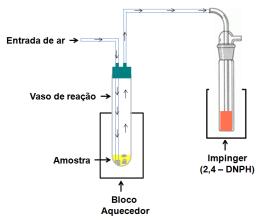
Determinação de compostos carbonílicos em amostras de biodiesel de soja após oxidação acelerada em Rancimat

Anaildes L. Carvalho¹ (PG)^{*}, Erica A. Cardoso¹ (PG), Gisele O. da Rocha¹ (PQ), Iuri M. Pepe² (PQ), Daniel M. Grosjean¹ (PQ), Leonardo S. G. Teixeira¹ (PQ). alcarvalho22@gmail.com


Palavras Chave: biodiesel, oxidação, compostos carbonilicos, Rancimat

Introdução

O biodiesel apresenta em sua composição os ácidos graxos insaturados, os quais são susceptíveis a reações de oxidação. A oxidação de biodiesel podem gerar produtos voláteis como aldeídos, cetonas, alcoóis e ácidos carboxílicos 1-3. Os aldeídos são compostos cancerígenos. Portanto, a emissão desses compostos na atmosfera durante o processo de queima do combustível pode trazer consegüências muito danosas aos seres humanos e ao meio ambiente⁴. Diante do exposto, neste trabalho, foi desenvolvido um método para capturar os compostos carbonilicos que são formados durante a degradação do biodiesel de soja. O método Rancimat foi empregado para promover a oxidação acelerada do biodiesel, e os produtos obtidos, após a reação com 2,4 DNPH, foram identificados por cromatografia líquida de alta eficiência com detecção por arranjo de diodos (CLAE-DAD).

Resultados e Discussão

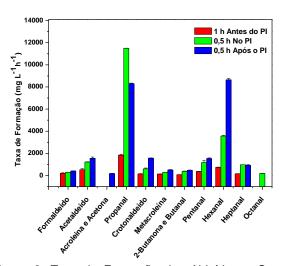

O sistema de coleta dos produtos originados da degradação do biodiesel de soja foi montado, conectando-se a cada unidade do bloco aquecedor do Rancimat, *impingers* contendo solução de 2,4 dinitrofenilhidrazina 1,0 % (m/v), ilustrado na Figura 1. Para isso, pesou-se aproximadamente 3,0 g de biodiesel de soja no vaso de reação e submeteu-se a amostra à temperatura constante de 110 °C e fluxo de ar de 10 L h⁻¹.

Figura 1. Esquema de coleta dos produtos de degradação do biodiesel de soja.

37ª Reunião Anual da Sociedade Brasileira de Química

Os aldeídos identificados como produto da reação do biodiesel foram o formaldeído, acetaldeído, acroleína, propanal, crotonaldeído, metacroleína, butanal, pentanal, hexanal, heptanal e octanal. Durante o aquecimento do biodiesel, os compostos que apresentaram maior significância nas taxas de formação foram acetaldeído, propanal e hexanal para todos os tempos de coleta. Os compostos estudados mostraram que as maiores taxas de formação ocorreram no tempo de coleta após o período de indução (PI), conforme mostrado na Figura 2.

Figura 2. Taxa de Formação dos Aldeídos e Cetonas obtidos com a degradação do biodiesel de soja.

Conclusões

Com o procedimento proposto foi possível identificar e quantificar onze aldeídos formados com a oxidação das amostras de biodiesel de soja. Os compostos que apresentaram os maiores aumentos relativos na taxa de formação foram acetaldeído, propanal, e hexanal.

Agradecimentos

CNPq e Fapesb.

¹ Universidade Federal da Bahia, Instituto de Química, CEP:40170-270, Salvador-BA, Brasil.

² Universidade Federal da Bahia, Instituto de Física, CEP: 40170-270, Salvador-BA, Brasil.

Grosch, W. Lipid Degradation Products and Flavours. In Food Flavours. Part A. Introduction; Morton, I. D.; Macleod, A. J., Eds.; Elsevier Scientific Publishing Company: Amsterdam, 1982.

²Seppanen, C. M.; Csallany, A. S. *J. Am. Oil Chem. Soc.* **2004**, 81, 1137.

Wanasundara, U. N.; Shahidi, F. Journal Food Lipids. 1993, 1, 15.
Cahill, T. M.; Okamoto, R. A. Environ. Sci. Technol. 2012, 46, 8382.