Estudos da eletro-oxidação do ânion tiocianato sobre ouro.

Murilo F. Cabral* (PQ), Hamilton Varela (PQ)

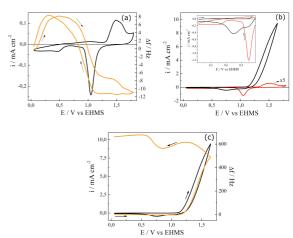
*cabralmf@igsc.usp.br

Instituto de Química de São Carlos, USP, CP 780, CEP 13560-970, São Carlos-SP, Brasil.

Palavras Chave: Tiocianato, eletrodo de ouro, nanobalança eletroquímica de cristal de quartzo.

Introdução

O sistema tiocianato/eletrodo de ouro vem sendo tema de vários estudos, geralmente em meio neutro (solução tampão)¹. Propõe-se que a interação ocorre pelo átomo de enxofre; provavelmente devido à forte ligação Au-S¹, amplamente estudada².


Dada a forte interação do enxofre com o Au; pode ocorrer a formação de um filme, por meio do complexo $Au(SCN)_x^{n-}$, eventualmente promovendo a lixiviação do ouro da superfície do eletrodo³. Não existem muitos dados quantitativos sobre essa lixiviação e os estudos sobre a adsorção do ânion SCN^- , vem sendo cada vez mais investigados.

O objetivo deste trabalho é buscar um melhor entendimento sobre a interação do ânion SCN⁻ com o eletrodo de ouro, por meio do uso da nanobalança eletroquímica a cristal de quartzo (NECQ).

Resultados e Discussão

Para o nosso sistema, 1 Hz equivale a 38 ng, aplicando a equação de Sauerbrey⁵, para um cristal com frequência fundamental de 6 MHz. De acordo com a carga obtida para a redução do óxido de Au em tampão fosfato 0,1 M (Fig. 1a), a área eletroativa do eletrodo de Au-NECQ é de 0,6 cm² e o fator de rugosidade igual a 1,5. A variação de frequência esperada para uma monocamada de átomos de Au corresponde a 20 Hz (735 ng). Na presença SCN⁻ (10mM) foi possível observar que os processos relacionados com o início da oxidação do Au (ca. 0,7 V) foram inibidos (Fig. 1b), assim como a oxidação do Au em potenciais mais elevados (E > 1,2 V). Durante a varredura reversa foram observados dois picos (ca. 0,85 V e 0,7 V); de forma que esses picos podem estar associados à redução de SCN⁻. Integrando as curvas i-E, entre 0,05 V e 1,0 V, para os dois voltamogramas, as cargas obtidas foram iguais a 2,14 mC $\rm cm^{-2}$ e 2,80 mC cm⁻², na presença e ausência de SCN⁻. respectivamente. A razão entre essas cargas, indica que 80% da superfície pode estar recoberta com Au(SCN)_xⁿ-. A variação de frequência observada na Fig. 1c mostra que durante a oxidação, a frequência aumentou abruptamente (ca. 600 Hz, ou 22,6 μg) e durante a redução, a variação de frequência foi de 100 Hz μ**g**). aproximadamente (3,8 Assim, permaneceu na superfície do eletrodo. aproximadamente 19 µg. A variação de frequência para a oxidação é 30x maior do que a esperada 37ª Reunião Anual da Sociedade Brasileira de Química

para a remoção de uma monocamada de Au, sugerindo a lixiviação de uma certa quantidade de Au. Já durante a redução, uma certa quantidade de SCN¯, provavelmente, complexado com átomos de Au, é eletrodepositada e no final do ciclo, uma certa quantidade de ânions complexados permanecem adsorvidos na superfície do eletrodo.

Figura 1. (a) VC do Au (–) e sua respectiva Δf (–), (b) VC do Au (–) na presença de SCN $^-$ (–) e (c) VC do Au na presença de SCN $^-$ (–) e sua respectiva Δf (–). dE/dt = 0,1 V s $^{-1}$. Eletrólito: tampão fosfato 0,1 M (pH 7,0).

Conclusões

O acompanhamento da eletro-oxidação de tiocianato sobre ouro via NECQ mostrou que a lixiviação de átomos de ouro da superfície do eletrodo pode ser um processo que ocorre em ampla extensão, ao contrário do que foi previamente sugerido 3 . Os estudos sobre a formação de um filme de $\mathrm{Au}(\mathrm{SCN})_x^{n-}$ precisam ser mais investigados.

Agradecimentos

Os autores agradecem a FAPESP pelos auxílios e bolsas concedidos (HV: #2009/07629-6, #2012/24152-1 e MFC: #2013/00216-3).

¹ Bron, M.; Holze, R. *Electrochim*. Acta. **1999**, 45, 1121.

² Gooding, J.J.; Mearns, F.; Yang, W.; Liu, J. *Electroanalysis* **2003**, *15*, 81.

³ McCarley, R.L.; Kim, Y-T.; Bard, A.J. J. Phys. Chem. 1993, 97, 211.

⁴ Yang, X.; Moats, M.S.; Miller, J.D. *Electrochim. Acta.* **2010**, *55* 3643.

⁵ Buttry, D. In *Electroanalytical Chemistry*; Bard, A. J., Ed.; Marcel Dekker: New York, **1991**; Vol. 17.