Síntese, caracterização e aplicação de materiais metal-orgânicos como novas fases estacionárias para pré-concentração de pesticidas.

Paula C. S. Andrade¹ (IC)*, Bia C. Brum¹ (IC), Marcelo O. Rodrigues² (PQ), Severino A. Junior³ (PQ) Adalberto M. Filho¹, (PQ), Alysson S. Barreto^{1,2} (PQ). paulaquimica92@gmail.com

Palavras Chave: Materiais Metal-Orgânicos, Fase Estacionária, Pesticidas.

Introdução

Materiais Metal-Orgânicos (MMO) são comumente designados de polímeros de coordenação e/ou Metal-Organic Frameworks e formam uma nova classe de materiais híbridos porosos orgânicos-inorgânicos. Estes compostos apresentam estruturas, obtidas a partir da auto-organização molecular de íons metálicos e ligantes orgânicos multifuncionalizados. Devido particularidade, esses materiais são promissores para aplicações em diferentes setores industriais e científico estratégico. Dessa forma, alguns desses compostos vêm sido testados como catalisadores, na estocagem e processamento de gás, separação de isômeros, carreadores de drogas e fases estacionárias para préconcentração de analitos² em etapas de preparo de amostras. Nesse trabalho propõe-se a síntese e caracterização do MMO 3D [($La_{0.9}Sm_{0.1}$)₂(DPA)₃(H_2O)₃]_{∞} (DPA = ácido 2,6-piridina dicarboxílico) para aplicação como adsorvente na extração de resíduos dos pesticidas clofentezina, atrazina, flumetralina, fenbuconazole e esfenvalerato em mel utilizando a dispersão da matriz em fase sólida (MSPD).

Resultados e Discussão

A análise de difração de raios-x de monocristal indicou que o composto obtido é isoestrutural ao composto já reportado por BARRETO e colaboradores³. Ele possui dois átomos de lantanídeos independentes formando dois poliedros de coordenação. Ln(1) é nonacoordenado O MMO sintetizado obteve resultados compatíveis na e Ln(2) é octacoordenado, resultando em poliedros com fórmulas LnO₇N₂ e LnO₇N respectivamente.

O composto cristalizou no grupo espacial monoclínico Florisil, sílica). P21/c, com parâmetros da célula unitária conforme tabela 1. Cada ligante DPA se coordenou com três íons Ln⁺³ a partir do átomo de nitrogênio do anel piridínico e dos oxigênios dos dois grupos carboxilatos, formando uma estrutura tridimensional (3D) conforme indícios CAPES observados nos espectros de infravermelho.

O MMO sintetizado foi aplicado na extração dos pesticidas e apresentou resultados compatíveis com os adsorventes disponíveis comercialmente (alumina, florosil e sílica) conforme figura 1.

Fórmula Empírica	C ₂₁ H ₁₅ Ln ₂ N ₃ O ₁₅
Massa Molar	829,42 g/mol
Comprimento de Onda dos Raios- x	0,71073
Sistema Cristalino e Grupo Espacial	monoclínico, P2 ₁ /c
Dimensões da Célula Unitária	a = 11,0073(3) Å α= 90 ° b = 17,5610(5) Å β = 100,369 ° c = 13,5801(4) Å γ = 90 °
Dimensão do Cristal	0,306 x 0,362 x 0,440 mm
Limite dos Índices de Miller	-3 ≤ h ≤ 13, 0 ≤ k ≤ 22, 4 ≤ l ≤ 17
Método de Refinamento	Matrix least-squares completa em F ²
Concordância sobre F ²	0,81(6)

Tabela 1: Dados Cristalográficos e Parâmetros do Refinamento Estrutural Resumidos para o MMO

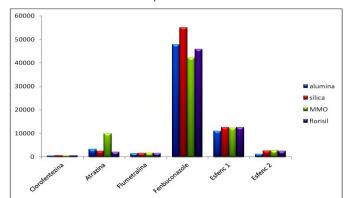


Figura 1: Resultados compatíveis com os adsorventes disponíveis

Conclusões

extração de resíduos dos pesticidas comparando-o com os adsorventes utilizados comercialmente (alumina,

Agradecimentos

DPP-UNB, UFPE, PIBIT-IFS, INCT INAMI, CNPg e

¹ Instituto Federal de Sergipe (IFS), Av. Eng. Gentil Tavares, 1166. Aracaju-SE.

² Instituto de Química da Universidade de Brasília (IQ-UNB), Campus Universitário Darcy Ribeiro. Brasília-DF.

³ Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235. Recife-PE.

^{1.}YAGHI, O.M.; O'KEEFFE, M.; OCKWIG, N.W.; CHAE, H.K.; EDDAOUDI, M.; KIM, J.; Nature 423 (2003) 705-714.

2. NI, Z.; JERRELL, J. P.; CADWALLADER, K. R.; MASEL, R. L.; Anal.

Chem. 79 (2007) 1290.

^{3.} BARRETO, A. S.; SILVA, R. L.; SILVA, S. C. G. S.; RODRIGUES, M. O.; SIMONE, C. A.; SA, G. F.; JUNIOR, S. A.; NAVICKIENE, S.; MESQUITA, M. E.; J. Sep. Sci. 2010, 33, 3811-3816.