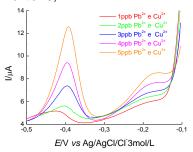
Nanomateriais em Estudo Eletroquímico para Determinação de Metais Traços.

*Andréa C. O. Silva¹(PG), Eid. C. da Silva¹(PG), Luis C. F. de Oliveira¹(PG), Mário R. Meneghetti¹(PQ), Fabiane C. de Abreu¹(PQ).

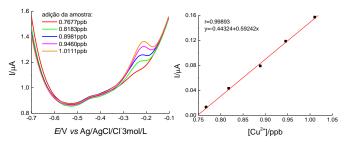
*acosquim@gmail.com

¹Universidade Federal de Alagoas

Palavras Chave: Metais Traços, Nanomateriais.


Introdução

O desenvolvimento de procedimentos analíticos para quantificar metais traços é de extremo interesse e um desafio, uma vez que alguns metais destacam-se por sua toxicidez, como Pb, Cd, Ni, Hg, Cu, Zn, contaminantes estes que influenciam na qualidade dos ambientes aquático, terrestre e atmosférico^{1,2}. No presente trabalho, a redissolução anódica foi empregada com técnica de voltametria de pulso diferencial para determinação de elementos eletroativos em nível traços.


Resultados e Discussão

Foram preparados 11 eletrodos: (1) CV; (2) CV/Hg; (3) CV/Bi; (4) CV/NTC; (5) CV/NTC/Hg; (6) CV/NTC/nanoSiO₂/Hg; CV/NTC/Bi; CV/NTC/nanoSiO₂/Bi; (9) CV/NTC/nanoAu-SiO₂; CV/NTC/nanoAu-SiO₂/Hg; CV/NTC/nanoAu-SiO₂/Bi. Para análise de espécies Cu²⁺ e Pb²⁺, os experimentos voltamétricos foram realizados com sistema de 3 eletrodos em meio aguoso HCl 0,1 mol/L. O Filme de Hg e Bi foi depositado eletroquimicamente sobre a superfície do eletrodo de carbono vítreo ou na superfície modificada (eletrodo de trabalho), usando uma solução 0,01 mol/L de nitrato de mercúrio e 400 μg/L de nitrato de bismuto, fio de platina (eletrodo auxiliar) e Ag/AgCl/Cl⁻ sat. (eletrodo referência). Nas análises, foram empregados tempos de préconcentração de 5 minutos. A superfície do eletrodo de carbono vítreo modificada com nanoAu-SiO₂ apresentou a melhor mobilização. A intensidade da corrente do sinal eletroquímico é proporcional à concentração do metal, deste modo, foram construídas curvas de calibração das soluções padrão de Cu²⁺ e Pb²⁺. Estas demonstraram maior intensidade da corrente de pico de oxidação em potencial de aproximadamente -0,30V e -0,50V, respectivamente, para o eletrodo de carbono vítreo modificado com NTC/nanoAu-SiO2. Mobilização esta que apresentou LD e LQ, respectivamente 0,3687 e 1,2293 para Cu²⁺ e 0,3039 e 1,0132 para Pb²⁺ . Para análise simultânea dos metais, o Ep_a para o Cu²⁺ é -0,203 V e para o Pb²⁺ é -0,396 V -0,514 V. Deste modo, foi realizado o estudo com amostra de água obtendo para Cu²⁺ sinal de oxidação com Ipa diretamente proporcional a 37ª Reunião Anual da Sociedade Brasileira de Química

concentração adicionada do analito, com linearidade da curva de 0,9989, equação da reta lpa= -0,44324+0,59242 [Cu $^{2+}$] e sinal em E_{pa} aproximadamente -0,211 V.

Figura 1. Voltamograma para determinação simultânea dos íons Pb²⁺ e Cu²⁺ por DPASV em GC/CNT/nanoAu-SiO₂.

Figura 2. Determinação do íon Cu²⁺ por DPASV em GC/CNT/nanoAu-SiO₂, em amostra de água potável, em meio HCl pH 1 com tempo de préconcentração de 300s. (a) Voltamograma; (b) Curva de calibração analítica.

Conclusões

Contudo, o método, então pôde ser aplicado a amostra real e determinado o íon cobre, e através do teste de recuperação foi possível validar o método como alternativo para estudo de amostras de água.

Agradecimentos

CNPq, Fapeal e Capes

¹ Korolczuk, M.; Stepniowska, A.; Tyszczuk, K. J. Environ. Anal Chem. 2009, 89, 727.

² Locatelli, C.; Torsi, G. Journal of Electroanalytical Chemistry, 2001, 509, 80-89.