Determinação de Ca, Fe, K, Na, Mg, Zn e Cu em cervejas comercializadas no estado do Rio de Janeiro por espectrometria de absorção atômica com atomização em chama.

Mariane da S. Ferreira (TM)^{1*}, Sérgio S. Henrique Junior (FM)¹, Heitor B. P. Ferreira (PQ)¹.

¹IFRJ, Instituto Federal do Rio de Janeiro, Campus Nilópolis, Rio de Janeiro, Brasil.

*mariane.sferreira@hotmail.com

Palavras Chave: metais, cerveja, absorção atômica.

Introdução

A cerveja é uma bebida altamente difundida e de intenso consumo. O Brasil é o 5° maior produtor mundial e tem perspectivas de crescer ainda mais. A cerveja pode ser produzida a partir de várias matérias-primas. Os principais ingredientes são o malte de cevada, o lúpulo e a levedura. São admitidas cervejas com diferentes teores alcoólicos, extratos primitivos e tipos de fermentação [1]. A cerveja possui um grande valor nutritivo que oferece muitos benefícios а saúde. Atua desintoxicante e diurético, sendo assim facilmente assimilado pelo organismo. O responsável pelos efeitos positivos da cerveja é o lúpulo, uma planta que confere o sabor amargo da cerveja. No processo de produção da cerveja podem ocorrer possíveis contaminações de metais como Ca, Cu, Fe, K, Mg, Na e Zn e esses metais em determinadas concentrações podem acarretar em alta toxidade no organismo, pois essas partículas inibem enzimas e podem causar náusea, falha renal, danos ao coração, dentre outros [2]. Esses metais podem ser determinados principalmente pelo método de absorção e emissão atômica. A proposta do trabalho é determinar a quantidade de diferentes metais em mg/L presente em diferentes marcas de cervejas artesanais e industrializadas.

Resultados e Discussão

Os padrões dos metais foram preparados utilizando como solvente uma mistura álcool/água (1/19 v/v), sendo preparados 3 padrões para cada um dos analitos. Para o preparo das amostras foram adicionados 3,00 mL de cerveja previamente degaseificada, 5 mL de (HNO₃ + HSO₄ + HClO₄) na proporção 3:1:1, em seguida a mistura foi levada a um aquecimento em chapa à uma temperatura de 100°C. Por fim cada mistura foi transferida quantitativamente para um balão de 100,00 mL e assim aferido com água deionizada [2].

As amostras foram analisadas no aparelho de absorção atômica da marca Perkin Elmer, modelo AAnalyst 200. Os metais Na e K foram analisados por emissão. Avaliando os resultados descrito na Tabela 1, verifica-se que quando comparados com

a legislação empregada na Inglaterra [3], já que no Brasil não existe uma norma vigente, todas das amostras estão fora da conformidade para a concentração de ferro. Observa-se ainda que em algumas amostras as concentrações de cobre e zinco estão acima do permitido. Para os demais analitos as amostras apresentaram-se conformes. **Tabela 1.** Resultados obtidos para a determinação

Tabela 1. Resultados obtidos para a determinação da concentração em mg/L de metais nas amostras de cerveja.

Cerveja	Ca	Fe	K	Na	Zn	Mg	Cu
1	-	11,8	37	78,0	1,1	10,8	-
2	24,9	13,8	732	-	0,9	11,2	-
3	-	12,3	754	-	0,3	10,9	-
4	-	11,9	864	-	3,4	10,9	0,5
5	-	12,8	832	-	0,8	10,8	0,8
6*	-	11,7	834	527	0,4	10,5	2,1
7	117	12,1	629	62,9	0,4	11,0	-
8	-	13,5	793	-	1,6	10,4	0,5
9*	90,6	12,2	875	-	1,8	10,5	0,7
10*	141	12,8	797	130	5,7	10,4	0,3
Limites#	40-	0,008-	135-	21-		60-	
	140	0,80	1100	230	<1	200	<0,1

*cervejas industrializadas / # valores máximos e mínimos utilizados na legislação inglesa [3].

Conclusões

É visto que o método é valido para este tipo de analise, no qual foi possível analisar os metais Ca, Cu, Fe, Mg, e Zn em cerveja por absorção atômica e os metais K e Na por emissão atômica. Estudos de reprodutibilidade e limites de quantificação estão em fase de estudo.

Agradecimentos

Ao CNPq pela bolsa concedida.

Brigido, R.V.; Netto, M.S.. Produção de Cerveja. Pesq. científica, 2006. Florianópolis – SC.

² Dimas, N. D. Análise química da cerveja 2M em termos dos teores de Ca,Cu, Fe, K, Mg, Na, e Zn e verificação da contribuição dos teores destes elementos a partir da água e do malte, Monografia de Licenciatura, Universidade Eduardo Mondlane,2010, 45p.

³Pohl, P.. Food Additives and Contaminants, 2008, 25, 693.