# Desenvolvimento de método para determinação de piperina em extrato de *Piper nigrum* por UPLC-PDA-FLD.

Thaís S. Andrade<sup>1</sup> (PQ), \*Vanessa X. Silva<sup>1</sup> (TM), Vivianne G. Martins<sup>1</sup> (PQ), Simone C. Chiapetta<sup>1</sup> (PQ).

Palavras Chave: Piperina, Piper Nigrum, UPLC.

### Introdução

A piperina é um marcador alcalóide extraído das sementes de pimenta da espécie *Piper nigrum*. É utilizada na medicina tradicional e como inseticida devido à variedade de propriedades farmacológicas, como antiinflamatória e antifungica<sup>1</sup>. Recentemente, formulações com este fitoconstituinte, associado a diversos fármacos, tem sido patenteadas por sua capacidade de potencializar a biodisponibilidade dos mesmos, e na composição de armas químicas nãoletais, devido à suas características que conferem irritação aos olhos e mucosas.

Neste contexto, este trabalho teve como objetivo o desenvolvimento de método analítico para a determinação do extrato de *Piper nigrum* através da determinação do teor do marcador piperina (PIP), por cromatografia a liquido de ultra eficiência (UPLC) com detector por arranjo de fotodiodo (PDA) e de fluorescência (FLD) em linha.

## Resultados e Discussão

Neste trabalho, a determinação do marcador piperina, em amostra de extrato, foi realizada pelo método de adição de padrão. Aproximadamente 25,0 mg do extrato foi diluído em 5,0 mL de metanol. Após a filtração, em membrana PTFE 0,22 µm, 20,0 µL do extrato diluído foi fortificado com (5,0; 10,0; 15,0; 20,0 e 25,0 mg L<sup>-1</sup>) de uma solução padrão de piperina (1000 mg L<sup>-1</sup>) e avolumado para 1,0 mL com metanol. A amostra foi analisada por UPLC-PDA-FLD, em triplicata real (n=9), nas condições descritas na Tabela 1, com os perfis cromatográficos apresentados na figura 1.

**Tabela 1.** Condições cromatográficas utilizadas para a determinação do teor de PIP por UPLC-PDA-FLD.

| Fase móvel                     | MeOH:H <sub>2</sub> O (65:35% v:v)                              |  |  |
|--------------------------------|-----------------------------------------------------------------|--|--|
| Coluna                         | Acquity UPLC BEH C <sub>18</sub><br>(50 x 2,1 mm; 1,7 μm)       |  |  |
| Injeção, Vazão,<br>Temperatura | 1,0 μL; 0,2 mL min <sup>-1</sup> ; 50 ℃                         |  |  |
| Comprimento de onda            | 343 ± 1 nm                                                      |  |  |
| PDA e FLD                      | □ <sub>excitação</sub> : 339 nm e □ <sub>emissão</sub> : 450 nm |  |  |

Os perfis cromatográficos apresentam picos bem resolvidos, com tempos de retenção da PIP de 1,81 min para o PDA e de 1,93 min para o FLR. Os resultados mostraram que o método apresentou linearidade na faixa de 5,04 a 31,3 mg L<sup>-1</sup>, r<sup>2</sup>= 0,9966 e 0,9943 e resolução de 3,68 e 2,62 para o PDA e FLR, respectivamente. Na Figura 2, estão representadas as curvas de adição do padrão de PIP sobre a amostra de extrato.

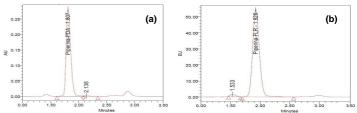
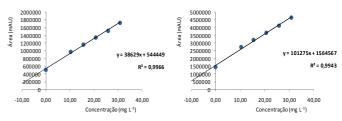




Figura 1: Perfis cromatográficos para a análise de piperina nos detectores PDA (a) e FLR (b).



**Figura 2:** Curvas de adição de padrão de PIP sobre o extrato de *Piper nigrum* analisado por (a) UPLC-PDA e (b) UPLC-FLD.

A comparação entre os coeficientes angulares das curvas de adição de padrão, obtidas por diferentes detectores, demonstrou que o FLD apresenta sensibilidade 2,6 vezes maior do que o PDA na quantificação de PIP.

Na Tabela 2 estão descritos os resultados obtidos na determinação do extrato de *Piper nigrum*, que não apresentaram diferença significativa.

**Tabela 2.** Comparação entre os resultados obtidos na determinação da PIP por UPLC-PDA-FLD (n=9).

| determinação da l'il por or Eo l B/(1 Eb (11=3): |         |         |         |                |                     |  |
|--------------------------------------------------|---------|---------|---------|----------------|---------------------|--|
| Conc.<br>(mg Kg <sup>-1</sup> )                  | 1       | 2       | 3       | S <sup>2</sup> | F <sub>calc</sub> * |  |
| PDA                                              | 19987,9 | 19317,6 | 18584,1 | 493010         | 1.39                |  |
| FLD                                              | 21539,0 | 20755,6 | 20370,3 | 354697         | 1,39                |  |

\* F<sub>calc</sub>< F<sub>tab</sub>- não há diferença significativa para a determinação de PIP por quaisquer detector (F<sub>tab</sub>= 3,44; nível de significância 5%)

#### Conclusões

O método desenvolvido neste estudo mostrou ser simples, sensível, rápido e adequado à determinação de piperina no extrato de *Piper nigrum*, apesar da complexidade da matriz. Os detectores utilizados no método desenvolvido apresentaram respostas equivalentes, quando submetidos à mesma faixa de trabalho, possibilitando a aplicação do método no monitoramento da piperina em diferentes formulações.

#### Agradecimentos

Ao INT, CNPq.

<sup>&</sup>lt;sup>1</sup> Instituto Nacional de Tecnologia, Av. Venezuela, 82, Saúde, Rio de Janeiro- RJ. \*vxs.vanessa@gmail.com

 $<sup>^{\</sup>rm I}$  Xiaoji Caoa, Xuemin Yea, Yanbin Lub, Yi Yua,<br/>Weimin Moa. Analytica Chimica Acta 640 (2009) 47–51

 $<sup>^2</sup>$  Sunil Bajada , A.K. Singlab, K.L. Bedia. Journal of Chromatography B, 776 (2002) 245–249