Síntese, propriedades fotofísicas, e marcação celular de derivados do núcleo 2,1,3-benzotiadiazola.

Pedro H. P. R. Carvalho*(PG), Diego C. B. D Santos (PG), Jefferson A. Medeiros (IC), Brenno A. D. Neto (PQ).

IQ-UnB, Campus Darcy Ribeiro, pedrohpimenta@hotmai.com

Palavras Chave: Benzotiadiazola, fotoluminescência, ESIPT, marcação celular

Introdução

O núcleo 2,1,3-benzotiadiazola (BTD) e seus compostos derivados apresentam interessantes e desejáveis propriedades para a construção de moléculas fotoluminescentes.¹

O ESIPT (Excited state intramolecular proton transfer) é um processo que diminui a energia da estrutura no estado excitado, estabilizando a molécula. O processo ESIPT depende do meio em que se encontra o composto, fatores como polaridade e pH tem grande influência na conformação adotada pela molécula.

Neste trabalho descreve-se a síntese de um composto derivado BTD, o estudo de suas propriedades fotofísicas e seguinte aplicação como marcador celular.

Resultados e Discussão

O derivado benzotiadiazola foi sintetizado conforme mostra o Esquema 1. O composto 1 (4,7-dibromo-2,1,3-benzotiadiazola) foi submetido a um processo de aminação de Buchwald-Hartwig com 47% de rendimento, levando à formação do derivado (2). Em seguida, (2) foi reduzido com magnésio metálico em uma solução de THF e H_2O , formando (3) com 18% de rendimento.

Esquema 1. Síntese dos derivados BTDs.

As investigações das propriedades fotofísicas, foram realizados por meio de análises espectrofotométricas e espectrofluorimétricas. Os dados obtidos são apresentados na Tabela 1.2

Tabela 1. Dados espectroscópicos dos compostos **BTDH.**

	Solvente	λ _{max} abs(nm)	log ε	λ _{max} em(nm)	λ _{em} -λ _{abs}
BTDH	AcOEt	423	4.13	534	111
	MeCN	417	3.91	550	133
	CH ₂ Cl ₂	422	3.96	547	125
	Hexano	417	3.70	514	97
	Tolueno	421	3.92	536	115
	Etanol	421	3.93	560	139

Após ter suas propriedades fotofísicas investigadas, o composto BTDH foi testado como possível marcador celular (Figura 2).²

Figura 2. Mitôcondrias de células de câncer de mama marcadas pelo composto **BTDH**.

Conclusões

Um novo derivado BTD foi sintetizado, caracterizado e testado como um novo marcador celular seletivo para mitocôndrias. Os dados obtidos pelas investigações fotofísicas confirmam que o composto realiza ESIPT. Apresenta um largo deslocamento de Stokes, o que caracteriza um estado excitado estabilizado, e elevados valores de absortividade molar (log ϵ) que são características de moléculas que realizam este processo.

Agradecimentos

Às instituições FAPDF, CNPq, CAPES, pelo apoio financeiro.

- ¹ Neto, B.A.D. Síntese de novas moléculas fotoluminescentes com conjugações p-estendidas com potencial para aplicação em sistemas OLEDs. (Programa de Pós-Graduação em Química). Doutorado – UFRGS. 2006
- ² Neto, B. A. D.; Carvalho, P. H. P. R.; Santos, D. C. B. D.; Gatto, C. C.; Ramos, L. M.; Vasconcelos, N. M.; Correa, J. R.; Costa, M. B.; Oliveira, H. C. B.; Silva, R. G. RSC Adv. **2012**, 2,1524;
- ³ G. Ulrich, F. Nastasi, P. Retailleau, F. Puntoriero, R. Ziessel and S. Campagna, *Chem.–Eur. J.*, **2008**, 14, 4381–4392.