Síntese e Atividade Bloqueadora de Canais de Cálcio de Xantenonas

Bruna S. Terra (PG)^{1,*}, Rebeca P. M. Santos (IC)², Andressa P. Mouro (IC)², Luciene B. Vieira (PQ)², Ângelo de Fátima (PQ)¹

Palavras Chave: xantenonas, canais de cálcio

Introdução

Xantonas e derivados, como as xantenonas, são compostos heterocíclicos que apresentam como núcleo básico um anel oxigenado fundido a um anel aromático. As xantonas apresentam atividade antidepressiva, cardiotônica, bloqueadora de canais de cálcio, dentre outras. Diferentemente, as xantenonas são pouco exploradas quanto suas atividades biológicas. Este trabalho visa à síntese e à avaliação da atividade bloqueadora de canais de cálcio de vinte xantenonas.

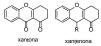
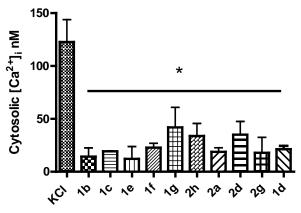



Figura 1. Estrutura da xantona e da xantenona.

Resultados e Discussão

As xantenonas foram sintetizadas através de uma reação multicomponente entre um composto fenólico (β -naftol ou sesamol), um aldeído e a dimedona catalisada pelo ácido oxálico (20 mol%), na ausência de solvente e sob irradiação de microondas (IMO) por 5 ou 10minutos (Tabela 1).

Tabela 1. Síntese de xantenonas sob catálise do ácido oxálico*.



)
Aldeído (R-CHO)	Rend. (%) para 1 ou 2	
	<i>β</i> -Naftol	Sesamol
4-NO ₂ -C ₆ H ₄ - (a)	80 ^a	54 ^b
4-F-C ₆ H ₄ - (b)	72 ^a	91 ^b
4-Cl-C ₆ H ₄ - (c)	81 ^a	68 ^b
2-HO-C ₆ H ₄ - (d)	91 ^b	90 ^b
4-HO-C ₆ H ₄ - (e)	35 ^a	70 ^b
4-MeS-C ₆ H ₄ - (f)	86 ^a	79 ^b
4-CN-C ₆ H ₄ - (g)	45 ^a	44 ^b
$3,4-(MeO)-4-(HO)-C_6H_2-$ (h)	46 ^a	62 ^a
3-(MeO)-4-(HO)-C ₆ H ₃ - (i)	55 ^a	63 ^a
C ₆ H ₅₋ (i)	82 ^b	67 ^a

^{*}Reagentes e condições: aldeído/composto fenólico/5,5-dimetil-1.3-cicloexadiona (razão molar = 1:1.2:1.5).

Após obtenção e caracterização, as xantenonas foram avaliadas quanto ao seu potencial bloqueador de canais de cálcio através do método Fura-2 AM. Este método avalia a concentração de cálcio intracelular após uma despolarização com KCI.⁴

As xantenonas 1 (b, c, d, e, f e g) e 2 (a, d, g e h) diminuíram a concentração de cálcio citosólica quando comparadas com o tratamento da célula apenas com KCl (Figura 2), sendo a xantenona 1b e a 1e as mais eficientes (redução de 88 e 90%, respectivamente).

Figura 2. Efeito das xantenonas na concentração de cálcio citosólica após indução com KCI. (As xantenonas foram avaliadas na concentração de 200 μ M).

Conclusões

As xantenas foram obtidas em rendimentos de ótimos a moderados, sob catálise do ácido oxálico e IMO, na ausência de solvente. Várias xantenonas mostraram-se eficientes na diminuição do cálcio citosólico, sendo as xantenonas **1b** e **1e** as mais promissoras.

Agradecimentos

À FAPEMIG, à CAPES e ao CNPq pelo apoio financeiro.

¹ Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

² Departamento de Farmacologia , ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

^{*} E-mail: brunaterra05@yahoo.com.br

^aIMO -10 min. ^b IMO - 5 min.

¹Kang, J.J.; Cheng, Y.W.; Ko, F.N.; Lin, C.N.; Teng, C.M. Br. J. Pharmacol., **1996**, 118, 1736.

²Naidu, K.R.M.; Krishna, B.S.; Kumar, M.A.; Arulselvan, P.; Khalivulla, S.I.; Lasekan, O. *Molecules*, **2012**, *17*, 7543.

³Kumar, A.; Sharma, S.; Maurya, R.A.; Sarkar, J. *J. Comb. Chem.*, **2010**, *12*, 20.

⁴Grynkiewicz, G.; Poenie, M.E.; Tsien, R.Y.A. *J. Biol. Chem.*, **1985**, 260, 3440.