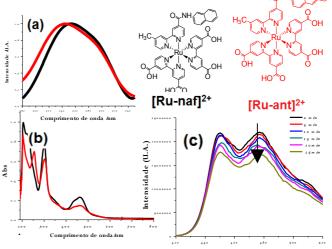
# GERAÇÃO DE OXIGÊNIO SINGLETE POR BICROMÓFOROS POLIPIRIDÍNICOS DE RUTÊNIO (II)

\*Felipe Diógenes Abreu (PG)¹, Idalina M. M.de Carvalho(PQ)¹, Eduardo H. S. Sousa (PQ)¹. \*felipediogenesabreu@live.com


<sup>1</sup>Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará-Campus do Pici, Fortaleza/CE Palavras Chave: Complexos polipiridínicos de rutênio (II), bicromóforos, oxigênio singlete, terapia fotodinâmica.

### Introdução

Atualmente, um dos campos de pesquisa mais ativos em bioinorgânica área é a terapia fotodinâmica de tumores<sup>1,2</sup>. O método usado em TFD baseia-se nas reações fotoquímicas entre luz, tecidos tumorais e um agente fotosensibilizador. Complexos polipiridínicos de rutênio possuem excelentes propriedades fotofísicas e redox, baixa toxicidade e maior eficácia frente a tumores primários. Todas essas características torna viável seu uso como drogas contra o câncer3. Vários tipos de complexos de rutênio (II) tris(bidentados) por exemplo, podem efetivamente fotoativar a clivagem de DNA devido ao longo tempo de vida dos seus estados <sup>3</sup>MLCT(na faixa de µs)<sup>4</sup>. Neste trabalho, propõem-se explorar as propriedades espectroscópicas, fotofísicas e redox de complexos trisbipiridínicos de rutênio (II) com substituintes aril (grupo naftil ou antracenil) covalentemente ligado a um dos ligantes bipiridil; bem como avaliar a capacidade desses compostos na geração da espécie a 1O2 e sua potencial aplicação em clivagem fotoinduzida de DNA.

## Resultados e Discussão

O espectro de UV-Vis dos complexos [Ru-naf]<sup>2+</sup> e [Ru-ant]<sup>2+</sup> em metanol (Figura 1) apresentam o perfil espectral típico1 do [Ru(bpy)<sub>3</sub>]<sup>2+</sup>, com máximos de absorção (MLCT) em 462 e 464 nm em metanol, respectivamente. A luminescência dos por complexos foi estudada técnicas fotoestacionárias e resolvida no tempo. Os dados fotofísicos são apresentados na Tabela 1. O rendimento quântico de geração de oxigênio singlete  $(\Phi_{\Delta})$  foi determinado pela reação do composto 1,3 difenilisobenzofurano (DPBF) com a espécie <sup>1</sup>O<sub>2</sub> gerada pelos complexos. O complexo [Ru-COOH]<sup>2+</sup> (sem grupos naftil e antracenil) foi sintetizado a fim de verificar a influencia dos cromóforos nos processos de geração de 102 No observam-se satisfatórios valores de  $\Phi_{\Lambda}$  (Tabela 1). O complexo [Ru(dcbpy)<sub>2</sub>mbpy-ant]<sup>2+</sup>, em especial, apresentou o melhor desempenho, tal comportamento provavelmente esteja fortemente associado aos níveis de energias do estado excitado (3MLCT e 3Ant) envolvido nos processos de transferência de energia intra e intermolecular.



**Figura 1.** Espectro de emissão (a) e absorção eletrônica (b) dos complexos; consumo de DPBF em função do tempo na presença de  $20\mu M$  do complexo [Ru-ant]<sup>2+</sup> (c).

**Tabela 1.** Dados espectroscópicos, fotofisicos e geração de oxigenio singlete para os complexos em metanol.

| Complexos               | λ (nm) <sub>máx</sub> Emissão<br>(rendimento<br>quântico) | τ (ns) | $arPhi_{\!\scriptscriptstyle \Delta}$ |
|-------------------------|-----------------------------------------------------------|--------|---------------------------------------|
| [Ru-COOH] <sup>2+</sup> | 600                                                       | 515    | 0,64                                  |
| [Ru-naf] <sup>2+</sup>  | 653 (0,065)                                               | 712    | 0,66                                  |
| [Ru-ant]2+              | 644 (0,0088)                                              | 787    | 0,81                                  |

#### Conclusões

Os valores de  $\varPhi_\Delta$  indicam a potencial aplicação dos compostos sintetizados em TFD. Além disso, é notório que a presença dos cromóforos aromáticos (em especial o grupo antracenil) é essencial na efetiva geração  ${}^1\text{O}_2$ .

## Agradecimentos







\_\_\_\_

Stochel, G. Chem. Rev. 105, 2647, 2005.

2. Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; REYNOLDS, J. V; *Photodiagn Photodyn* 8, 14, **2011.** 

1. Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.;

3. Sathyaraj, G.; Kiruthika, M.; Weyhermüller, T.; Unni Nair, B. *Organometallics* 31, 6980, **2012**.

4. Tossi, A.B.; Kelly, J.M. Photochem. Photobiol. 49,545, 1989.

