Estimativa do poder calorífico superior (PCS) de biomassas presentes no Extremo Sul da Bahia

Thaise Alves dos Santos¹ (IC)*, Allison Gonçalves Silva¹ (PQ). thaisealves@live.com.

Instituto Federal de Educação, Ciência e Tecnologia da Bahia – Campus Porto Seguro.

Palavras Chave: Biocombustível sólido, energia.

Introdução

De uma perspectiva ambiental, a sustentabilidade e o desenvolvimento dependem, dentre outras medidas, da redução das emissões de gases estufa com o uso de recursos naturais renováveis. Um futuro energético sustentável requer combinação de fatores, tais como recursos renováveis e avanços nas tecnologias energéticas. Desde a primeira crise do petróleo, houve um aumento na busca por fontes alternativas de geração de energia, como o desenvolvimento de energias renováveis. O uso de resíduos de biomassa tem sido crescente e utilizados em gaseificadores e para geração de energia. Biocombustível sólido é um termo para definir combustíveis gerados a partir de biomassa que possuem o objetivo de efetuar uma queima enquanto se encontram no estado sólido. O extremo sul da Bahia dispõe de grandes proporções de diferentes resíduos de biomassas, dentre eles a casca de coco verde, fruto característico da orla atlântica, principalmente da região nordeste, a casca de cacau gerada por meio da grande produção cacaueira na Bahia e a fibra de dendê, cultura que também gera muitos resíduos. 1

Este trabalho tem por objetivo caracterizar três biomassas *in natura* e torrificadas a 250°C de modo a fazer uma estimativa do PCS em ambos os casos.

Resultados e Discussão

A caracterização por análise imediata das biomassas de coco, cacau e dendê no estado in natura e após torrefação a 250°C possibilitaram verificar um grande aumento no PCS da biomassa torrificada com relação à biomassa in natura.

Isto se deve ao fato de que durante a torrefação ocorre a degradação da hemicelulose, componente que absorve água por meio da formação de ligações de hidrogênio com esta. O poder calorífico de um combustível é definido como a quantidade de calor desprendido estequiometricamente na sua queima completa. A presença de água diminui o PCS da biomassa, pois parte do calor gerado na queima desta última é utilizado para vaporizar a água. ² O PCS para as biomassas em estudo foram estimados com base na análise aproximada das biomassas, segundo estudos de Parikh et al. ³

37ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Comparação entre análises aproximadas de biomassas encontradas no Extremo Sul da Bahia

	D:	11.17	0:		D00
	Biomass	Voláte	Cinza	Carbo	PCS
	a	is (%)	s (%)	no	(MJ
				Fixo	Kg ⁻¹)
				(%)	0 ,
				(70)	
	Casca de	83,77	1,91	14,32	19,37
	coco	,	, -	, -	- , -
In	Fibra de	82,40	2,42	15,17	19,44
natura	dendê	,	,	,	,
	Casca de	74,74	6,90	18,36	19,26
	cacau	,	,	,	,
	Casca de	45,25	6,26	48,48	24,90
	coco	,	,	,	,
T					
Torrifica	Fibra de	44,79	5,13	50,07	25,39
das a	dendê	, -	, -	, -	,
250°C					
	Casca de	43,10	14,35	42,54	22,43
	cacau	, -	,	, -	, -

Conclusões

Das biomassas analisadas a fibra de dendê foi a que apresentou maior PCS. Com base nos resultados obtidos pretende-se indicar condições adequadas para melhor condicionamento dos resíduos visando o seu aproveitamento como biocombustível sólido com foco na sustentabilidade.

Agradecimentos

À FAPESB, ao IFBA – campus Porto Seguro.

¹ SILVA, A. G. Condicionamento de resíduo de eucalyptus grandis para produção de biocombustível sólido. 131 f. Tese (Doutorado em Química). Instituto de Química, Universidade Federal da Bahia, Salvador, 2013.

² GARCIA, D. P. Caracterização física, química e térmica de pellets de madeira produzidos no Brasil. 103 f. Dissertação (Mestrado em Engenharia Mecânica). Faculdade de Engenharia Universidade Estadual Paulista. Guaratinguetá, 2010.

³ PARIKH, J.; CHANNIWALA, S. A.; GHOSAL, G. K. *A correlation for calculating HHV from proximate analysis of solid fuels.* Science Direct, 2004.