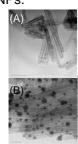
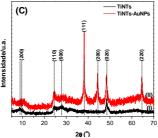
Propriedades bioeletrocatalíticas de Nanotubos de titanato funcionalizados com nanopartículas de ouro

Wellington Alves (PG)*, Wendel A. Alves (PQ)

*wellington.alves@ufabc.edu.br; wendel.alves@ufabc.edu.br

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André - SP, Brasil.


Palavras Chave: nanotubos de titanato, nanopartículas de ouro, microperoxidase 11, eletrocatálise, biossensores.


Introdução

Reacões envolvendo transferência eletrônica direta de elétrons em proteínas têm atraído grande principalmente interesse. em processos transferência de elétrons em meios fisiológicos e sistemas biológicos, permitindo dentre outras aplicações, o desenvolvimento de bissensores e biocélulas a combustível [1]. Recentemente, tem sido reportado que o emprego de nanotubos melhora o desempenho catalítico de enzimas possibilitando sua aplicação em biossensores [1]. Neste trabalho, nanotubos de titanato [2] foram funcionalizados com AuNPs e modificados com as enzimas microperoxidase-11 (MP11) e glicose oxidase (GOx) para investigar futuras aplicações e dispositivos eletroquímicos.

Resultados e Discussão

As Figuras 1A e 1B mostram as imagens de TEM dos TNTs puros e modificados com AuNPs. As imagens de TEM corroboram com os difratogramas mostrados na Figura 1C, o qual evidencia ainda a formação de AuNPs no interior dos TNTs conforme diminuição nos espaçamentos d_{200} de 0,98 (20 ~9,0°) para 0,90 nm (2 0 ~9,8°). Ainda, medidas de XPS confirmam a funcionalização dos TNTs com AuNPs.

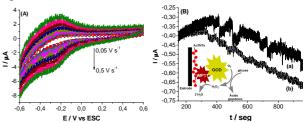


Figura 1. Imagens de TEM para (A) TNTs e (B) AuTNTs. (C) Difratogramas de raios-X.

Para a caracterização eletroquímica, foram obtidos filmes por LBL com 8 camadas (condição de saturação). A Figura 2 mostra os voltamogramas cíclicos do filme obtido com AuTNTs em pH 7 e atmosfera saturada de ar. As áreas eletroativas obtidas pela equação de Randles-Sevick para os eletrodos na ausência e na presença de AuNPs foram, 0,45 cm² e 0,60 cm², respectivamente. O voltamograma cíclico mostrado na Figura 2A

(GOx/MP11AuTNTs) exibe picos em -0,2 V (E_{pa}) e -0,3 V (E_{pc}), com potencial formal (E) de -250 mV, característicos da MP11. De acordo com o comportamento redox, a constante de transferência de elétrons (k_s) obtida foi de ($k_s \sim 1,6$, eletrodo sem AuNPs) 2,3 s⁻¹, valores expressivos se comparados a outros sistemas semelhantes, porém na ausência de AuNPs [3]. Na Figura 2B, nota-se o surgimento de uma corrente de redução após a adição de glicose, atribuída a redução do H2O2, gerado na oxidação da glicose pela GOx, na presença da enzima MP11. Ainda, a Figura 2B mostra que a corrente eletrocatalítica atinge valores elevados no eletrodo com AuNPs, confirmando que as nanopartículas tornam mais eficiente o processo de transferência eletrônica entre o eletrodo e o sítio ativo da enzima. O mecanismo pelo qual ocorre a redução do H₂O₂ é representado no encarte da Figura 2B.

Figura 2. (A) Voltamogramas para o eletrodo GOx/MP11AuTNTs, 0,05 V s⁻¹ < v < 0,5 V s⁻¹. (B) Resposta amperométrica em tampão pH 7, após adições sucessivas de glicose 0,1 mol L⁻¹ para os eletrodos (a) GOx/M11TNTs e (b) GOx/MP11AuTNTs. Potencial aplicado, -0,35 V.

Conclusões

O emprego de AuNPs contribui para o aumento da velocidade de transferência de elétrons eletrodoenzimas. Medidas eletroquímicas realizadas permitem concluir que os eletrodos modificados estudados nesse trabalho exibem grande potencial para aplicação em biocélulas a combustível.

Agradecimentos

UFABC, FAPESP, CNPq, INCT-Bioanalítica, LME-LNLS.

¹Bao, A. et al. *Adv. Funct. Mater.* **2008**, *18*, 591.

²Alves, W.; Alves, W. A. et al. *J. Phys. Chem. C.* **2011**, *115*, 12082.

³Wu, S.; Ju, H.; Liu, Y. Adv. Funct. Mater. 2007, 17, 585.