ESTUDO COMPARATIVO ENTRE PROPRIEDADES FÍSICO-MECÂNICAS DE COMPÓSITOS DE PP E PHB/FB COM CINZA DE CASCA DE ARROZ

Ivonete O. Barcellos*1(Pq), Aline Lovatel1(Ic), Ana Gama1(Ic), Leila D. Alberti1 (Pg), Doris Bucci1 (Pq)

1) Departamento de Química, Universidade Regional de Blumenau – FURB – *iob@furb.br

Palavras Chave: compósitos, cinza de casca de arroz, PP, PHB/FB

Introdução

Atualmente, devido ao aumento da produção agroindustrial, é crescente a preocupação com o destino dos resíduos de processamento, tais como a casca de arroz (CA) ou dos resíduos gerados quando a CA é aproveitada na geração de energia, as cinzas de casca de arroz (CCA), que ainda é motivo de preocupação ambiental, pois seu descarte geralmente ocorre de forma inadequada.¹ Pensando nesse problema surge o interesse de investigar a possibilidade de utilização desse material como carga em compósitos, pois estes vêm se destacando na busca de alternativas para reduzir o impacto ambiental². Neste trabalho o objetivo principal é incorporar CCA em matrizes poliméricas do compósito Poli(hidroxibutirato)/Fibra de vidro (189 D-1 L-159*) e do polipropileno (PP) realizando estudo comparativo entre um propriedades físico-mecânicas dos compósitos.

Resultados e Discussão

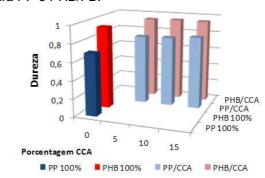
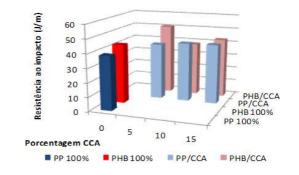

Os dois polímeros em estudo apresentaram boa miscibilidade com a CCA, sendo que foram preparados compósitos com 5, 10 e 15% em massa de CCA sob fusão e caracterizados nas propriedades: densidade, dureza, resistência ao impacto e condutividade térmica.

Tabela 1. Valores referentes a densidade e condutividade térmica dos novos compósitos PP/CCA e PHB/FB/CCA.


Compósito	Densidade (g/cm³)	Condutividade térmica (W/mk)
PP 100%	0,8146	0,57
PP/CCA 5%	0,8156	0,62
PP/CCA 10%	0,8177	0,62
PP/CCA 15%	0,8215	0,63
PHB/FB 100%	0,8236	0,47
PHB/FB/CCA 5%	0,8219	0,47
PHB/FB/CCA 10%	0,8215	0,47
PHB/FB/CCA 15%	0,8218	0,48

Os ensaios físico-mecânicos realizados mostraram que o resíduo CCA pode ser incorporado a polímeros sintéticos ou naturais sem alterar de forma significativa suas propriedades.

Figura 1 Resultados dos testes de dureza, para PP e PHB/FB.

Figura 2 Resultados dos testes de resistência ao impacto para PP e PHB/FB.

Conclusões

Diante destes resultados, concluímos que as CCA com aplicações em até 15 %, podem ser empregadas como carga em compósitos tanto PP ou PHB/FB como matriz polimérica, pois sua influência sobre as propriedades avaliadas foi pequena e em alguns casos houve ganho nas propriedades como na resistência ao impacto e ao risco. Sugerindo ser uma carga possível de substituição de cargas minerais convencionais de polímeros como talco, carbonato de cálcio, etc.

Agradecimentos

FURB e CAPES.

* Poli(hidroxibutirato) 189 D-1 L-159* apresenta a composição: 60%PHB, 20%fibra de vidro, 5% Plastificante, 5% Master branco e 10% Carbonato de cálcio.

¹ Angel, J. D. M etal. *Química Nova*, 2009, 32, 5, 1110 – 1114. 2. Casaril, A., Gomes, et al. *Revista Matéria*, 2007, 12, 2, 408 – 419.