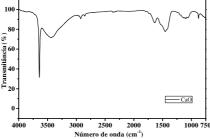
Sociedade Brasileira de Química (SBQ)

Preparação do catalisador heterogêneo óxido de cálcio suportado em cinza de casca de arroz.

Rayanne O. de Araújo¹ (IC)*, Renato H. de Souza¹ (PQ), Ivoneide de C. L. Barros¹ (PQ). E-mail: rayannearaujo20@gmail.

¹Universidade Federal do Amazonas, Av. General Rodrigo Octávio Jordão Ramos, 3000, 69077-000, Manaus-AM. Palavras Chave: glicerol, óxido de cálcio, cinza de casca de arroz.

Introdução

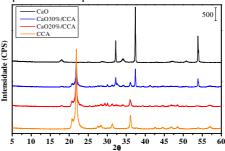

Recentemente, o biodiesel surgiu como uma alternativa viável em termos de combustível renovável. A principal rota de obtenção deste é a partir da reação de transesterificação, tendo como produto de conversão o Biodiesel e a Glicerina¹.

No Brasil, o Governo Federal definiu que a partir de 2013, o biodiesel será obrigatoriamente adicionado ao diesel de petróleo num percentual de 5%. O aumento da produção de biodiesel levou a uma superprodução de glicerina. Para cada 90m³ de biodiesel produzidos são gerados 10 m³ de glicerina².

O presente trabalho tem por objetivo preparar um catalisador do tipo óxido de cálcio suportado em cinza de casca de arroz (CCA) com o intuito de desenvolver novas tecnologias e métodos para o aproveitamento da glicerina na síntese do carbonato de glicerol.

Resultados e Discussão

Em consonância com o novo destino dado ao resíduo de casca de arroz, o óxido de cálcio (CaO) foi obtido também de um rejeito, isolado a partir de cascas de ovos de galinha. Durante a calcinação a 1000 °C/2h houve a decomposição do carbonato de cálcio e liberação de CO₂ O espectro de IV da Figura mostra que 0 CaO absorver umidade instantaneamente е CO2 apresentando picos de grupos hidroxila e carbonila.


Figura 1. Espectro de IV do CaO calcinado a 1000 °C/2h.

Os catalisadores contendo CaO suportado em cinza de casca de arroz (CCA) cristalina foram preparados pelo método de impregnação úmida. Na síntese, foi preparado uma solução aquosa de $Ca(OH)_2$ a partir do CaO, esta solução foi misturada a CCA cristalina (tratada a $1000\,^{\circ}\text{C/3h}$), previamente macerada. A mistura foi mantida em repouso por 24h, em seguida aquecida a $100\,^{\circ}\text{C/20h}$ e calcinada a $1000\,^{\circ}\text{C/2h}$.

O CaO é descrito na literatura como sendo o melhor catalisador heterogêneo capaz de promover a transesterificação entre o glicerol e o carbonato de dimetila, promovendo uma conversão de 100% e rendimentos maiores que 95%. Considerando que o processo de ativação e o tamanho das partículas 34ª Reunião Anual da Sociedade Brasileira de Química

são pontos essenciais para a atividade catalítica, este foi misturado com a CCA, que é um resíduo da indústria agrícola, com alta concentração de sílica, em média 90-99%, atuando como suporte com alta área superficial. Esta é uma opção atraente devido ao seu baixo custo, e o uso ainda inédito do catalisador na transesterificação do glicerol a carbonato de glicerol.

Comparando o DRX da CCA pura e dela modificada com diferentes teores de CaO (Figura 2), foi verificado que a introdução do CaO na matriz CCA não modificou a estrutura da sílica (observado em $2\theta\sim22^\circ$), principal constituinte da CCA, sugerindo que as condições de preparo ocasionaram boa dispersão dos cristais de CaO sobre os poros da superfície da CCA.

Figura 2. Difratogramas de Raios-X da CCA cristalina, calcinada a 1000 ℃/3h e dos catalisadores óxido de cálcio suportado na CCA.

Conclusões

As análises de DRX dos catalisadores óxido de cálcio suportado na CCA apontam uma boa dispersão do óxido em todas as concentrações testadas, e dentro do planejamento proposto, pretende-se avaliar os efeitos do sistema catalítico na síntese do carbonato de glicerol a partir do glicerol.

Agradecimentos

 $\ensuremath{\mathsf{CNPq}},\ \mathsf{por}$ apoio concedido em forma de bolsa e LAPEC-UFAM

¹MOTA, C. J. A.; SILVA, C. X. A.; GONÇALVES, V. L. C. *Quím. Nova.* **2009**,32, 639.

²GÓMEZ-JIMÉNES-ABERASTURI, O.; OCHOA-GÓMEZ, R.; PESQUERA-RODRÍGUEZ, A., RAMÍREZ-LOPEZ, C. ALONSO-GRYGLEWICZ, S. *Bioresour. Technol.* **1999**, *70*, 249.