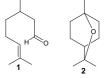
Avaliação da constituição química volátil do eucalipto-medicinal: uma ferramenta para o controle da comercialização inadequada

Ana C. Bezerra (IC)¹, Roberta R. Rocha (IC)¹, Francisco G. Barbosa (PQ)^{1*}, Jair Mafezoli (PQ)¹, Manoel A. Neto (PQ)¹

Palavras Chave: Eucalipto-medicinal, óleo essencial, 1,8-cineol.

Introdução

Em geral, plantas medicinais são utilizadas in natura e comercializadas de forma indiscriminada com a falsa alegação de que produtos de origem natural são totalmente seguros. Na medicina popular a espécie Eucalyptus globulus Labill é considerada o eucalipto-medicinal oficial. Contudo, no Nordeste brasileiro são encontradas principalmente as espécies Eucalyptus tereticornis Smith, considerada o eucalipto-medicinal do Nordeste, e a espécie Eucalyptus citriodora Hook com propriedades de repelência contra insetos e de desinfetante. O eucalipto-medicinal do Nordeste é utilizado no tratamento de problemas das vias respiratórias devido suas propriedades balsâmicas, expectorantes e anti-sépticas. Já a espécie E. citriodora não deve ser utilizada para esta finalidade. 1,2 Considerando-se que as duas espécies apresentam óleos essenciais de constituição química bastante diferenciada, neste trabalho utilizou-se a cromatografia gasosa acoplada à espectrometria de massa, CG-EM e CG-DIC, para identificar o tipo de eucalipto comercializado em ervanários e feiras-livres no estado do Ceará.


Resultados e Discussão

Amostras equivalentes de folhas secas de eucalipto (70 g), comercializadas nos municípios de Fortaleza (EF1 e EF2) e Itapipoca (EI1 e EI2), além do eucalipto-medicinal do Nordeste (EM) submetidas à extrações por hidrodestilação. Os óleos essenciais obtidos, EF1 (2,12%), EF2 (2,72 %), **EI1** (3,16%), **EI2** (2,72%) e **EM** (1,51%) foram analisados por CG-EM/CG-DIC e tiveram seus constituintes químicos identificados (Tabela 1).³ A análise da composição das quatro amostras comerciais mostrou semelhança na composição química e confirmou a presença do monoterpeno citronelal (1) como constituinte majoritário. Já o óleo essencial do eucalipto-medicinal do Nordeste apresentou como constituinte principal o 1,8-cineol ou eucaliptol (2), o qual é o principal responsável pelas propriedades terapêuticas do eucalipto. Embora o citronelal apresente ação anti-séptica, este é uma substância que provoca irritação da mucosa do trato respiratório.1 Desta forma, o eucalipto que apresenta este constituinte majoritário não deve ser utilizado para fins medicinais. Este deve ser utilizado como agente de limpeza, conforme o uso do E. citriodora. A avaliação do 35ª Reunião Anual da Sociedade Brasileira de Química

potencial nematicida contra *Meloidogyne incognita* revelou que os óleos **EF1**, **EF2**, **EI1** e **EI2** apresentaram um índice médio de mortalidade de 97%, 92%, 98% e 99%, respectivamente. No entanto, o óleo de eucalipto-medicinal do Nordeste mostrou-se praticamente inativo, com índice de mortalidade média de apenas 6%. Estes dados corroboram a diferenciação dos dois tipos de eucaliptos obtidos pela análise cromatográfica.

Tabela 1- Constituição química dos óleos essenciais das folhas de eucalipto obtidas nos municípios de Fortaleza e Itapipoca.

Constituinte	EF1	EF2	EI1	EI2	EM
	(%)	(%)	(%)	(%)	(%)
α-Pineno (IK 939)	-	-	-	-	2,35
β-Mirceno (IK 990)	-	-	-	-	0,85
<i>p</i> -Cimeno (IK 1020)	-	-	-	-	4,65
Limoneno (IK 1029)	-	-	-	-	11,69
1,8-Cineol (IK 1031)	-	-	-	-	45,32
γ-Terpineno (IK 1059)	-	-	-	-	21,10
Isopulegol (IK 1149)	-	-	-	-	1,91
Citronelal (IK 1153)	90,84	90,36	79,83	79,33	0,45
(iso)isopulegol (IK 1159)	1,15	2,11	2,22	2,01	0,72
Terpinen-4-ol (IK 1177)	-	-	-	-	1,38
Citronelol (IK 1225)	5,67	6,27	11,89	11,88	-
Acetato de mentila (IK 1295)	1,46	0,62	3,24	4,92	-
(E)-Cariofileno (IK 1419)	0,38	0,64	1,42	1,10	0,21

Conclusões

O emprego da CG-EM permitiu verificar que o eucalipto comercializado nos pontos de venda do estudo é inadequado para o uso na medicina popular, pois, possivelmente, trata-se da espécie *E. citriodora*. Portanto, esta técnica pode ser utilizada como ferramenta de controle do eucalipto como planta medicinal.

Agradecimentos

Os autores agradecem aos órgãos financiadores UFC, CNPq, CAPES e FUNCAP

¹⁻Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, CP 12.200, Fortaleza-CE, 60.021-970, Brasil. *e-mail: fgerhar@gmail.com

¹ Matos, F.J. de A. *Farmácias vivas*, 4. ed. Fortaleza: Editora UFC. **2002**.

² Matos, F.J. de A. Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras, 2. ed. Fortaleza: Editora UFC, 2004.

³Adams, R.P. *Identification of essential oil components by gas chromatography/mass spectrometry*, 4a ed. Allured Publishing Corporation, Carol Stream, IL. **2007**.