Hidroformilação-Acetalização *Tandem* do α-Pineno sob Condições não Ácidas

Marina C. de Freitas^{1*} (IC), Camila G. Vieira¹ (PG), Eduardo N. dos Santos¹ (PQ), Elena V. Gusevskaya¹ (PQ) *marinacaneschi@yahoo.com.br

Palavras Chave: Reações tandem, hidroformilação, acetalização, α-pineno, catalisador de ródio.

Introdução

A reação de hidroformilação é de grande interesse da indústria de química fina, uma vez que representa uma relevante ferramenta de síntese de aldeídos e outros compostos oxigenados de alto valor agregado. Esta reação pode facilmente integrar reações *tandem*, onde o grupo carbonílico do aldeído reage *"in situ"* formando outros produtos importantes¹. Tais processos *"one-pot"*, em que diferentes reações são realizadas no mesmo reator e sem o isolamento de intermediários, podem fornecer um caminho de síntese atraente e econômico para muitos compostos valiosos¹.

O presente trabalho relata, pela primeira vez, a síntese "one-pot" de acetais (3a, 4a e 4b) derivados do monoterpeno α -pineno (1), uma matéria-prima renovável e abundante no Brasil², com potencial aplicação na indústria de perfumes. É válido ressaltar que a literatura sobre a hidroformilação do α -pineno é bem escassa³, devido ao fato de tal substrato possuir uma ligação dupla endocíclica de difícil hidroformilação.

Resultados e Discussão

A **Figura 1** representa a rota sintética para a obtenção dos acetais (**3a**, **4a** e **4b**) derivados do α -pineno (**1**), utilizando-se etanol como solvente, substância barata e ambientalmente benigna.

Figura 1: Hidroformilação-acetalização do α-pineno (1).

O sistema catalítico contendo PPh₃/Rh=10 (**Exp.1**) levou a um baixo rendimento para os produtos de hidroformilação. Isso era esperado, pois a ligação dupla é altamente impedida e difícil de ser hidroformilada³. Todavia, a utilização do ligante P(O-o-^tBuPh)₃ teve um efeito benéfico na transfor-34^a Reunião Anual da Sociedade Brasileira de Química

mação *tandem* do α -pineno (**Exp.2**). As propriedades especiais desse fosfito são justificadas pela sua menor basicidade (χ =30,50 *versus* χ =13,25 para a PPh₃) e pelo seu maior ângulo de cone (θ =194° *versus* θ =145° para a PPh₃)⁴.

Os resultados obtidos no **Exp.3** mostram que o aumento da razão P/Rh pouco influenciou nos produtos da reação, isso sugere que a razão P/Rh=10 (**Exp.2**) é suficiente para garantir a ausência de ródio não promovido no sistema, evitando a ocorrência de reações paralelas (tais como isomerização e hidrogenação), cujos produtos são representados como "outros" (Out.), na **Tabela** 1. O aumento da temperatura favoreceu a reação de hidroformilação, como esperado, e também acelerou a segunda etapa do processo, ou seja, a reação de acetalização, aumentando, assim, o rendimento para os acetais de interesse.

Tabela 1: Hidroformilação-acetalização^a do α -pineno (1) catalisada por [Rh(COD)(OMe)]₂/P.

	P/ Rh	Tem (°C)	Rendimento (%)			
Exp			Hidroformilação			
	IXII	(0)	Tot ^c	Acetais ^d	Aldeídos	Out
1 ^b	10	100	5	3a(3);4(0)	3a(2);4(0)	3
2	10	100	75	3a(32);4(27)	3a(11);4(5)	6
3	20	100	77	3a(38);4(23)	3a(12);4(4)	6
4	10	120	84	3a(24);4(45)	3a(8);4(7)	6

^a Condições: α-pineno (0,20 M), [Rh(COD)(OMe)]₂ (0,25 mM), dodecano (0,10 M, padrão interno), 100°C, 80 atm (CO/H₂=1/1), etanol, $P = P(O-o^{-t}BuPh)_3$, 24 h.

Conclusões

Um sistema catalítico eficiente foi desenvolvido, permitindo a obtenção de acetais inéditos derivados do α -pineno, matéria-prima renovável obtida de plantas abundantes no Brasil, os quais podem ser aplicados na síntese de perfumes.

Agradecimentos

FAPEMIG, CNPq, CAPES e DQ/UFMG.

¹ Departamento de Química, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.

 $^{^{}b}$ P = PPh₃.

^c Rendimento para aldeídos e acetais.

^d Os acetais **4a** e **4b** foram obtidos em quantidades praticamente idênticas e estão representados juntos (**4**).

¹ Fogg, D. E.; dos Santos, E. N. Coordination Chemistry Reviews. **2004**, 248, 2365.

² Monteiro, J. L. F.; Veloso, C. O. *Topics in Catalysis.* **2004**, 27, 169.

³ da Silva, J. G. et al. *Applied Catalysis A.* **2007**, *326*, 219.

⁴ van Leeuwen, P. W. N. M.; Roobeek, C. F. *Journal of Organometallics Chemistry.* **1983**, 258, 343.