Degradação do hormônio 17 α-etinilestradiol utilizando filmes de TiO₂ e de TiO₂/WO₃ depositados em eletrodos transparentes

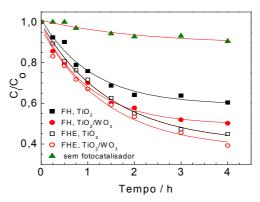
Haroldo G. de Oliveira¹* (PG), Letícia H. Ferreira^{1,2} (PQ), Rodnei Bertazzoli² (PQ), Claudia Longo¹ (PQ). * greg@iqm.unicamp.br

- 1- UNICAMP, Instituto de Química, C. Postal 6154, 13083-970, Campinas-SP
- 2- UNICAMP, Fac. Eng. Mecânica, C. Postal 6122, 13083-970, Campinas-SP

Palavras Chave: Fotocatálise heterogênea, contaminante emergente, estradiol, TiO2, TiO2/WO3

Introdução

A presença de produtos farmacêuticos em mananciais de água tem causado grande preocupação; o hormônio 17 α -etinilestradiol (EE2), presente em pílulas anticoncepcionais, é um contaminante emergente preocupante, devido à sua atividade como interferente endócrino.


A fotocatálise heterogênea (FH) com TiO₂ permite degradar o EE2 e outros poluentes orgânicos persistentes. Sob radiação UV, ocorre a separação de cargas elétron-lacuna; a lacuna, ou radicais OH° gerados na superfície do fotocatalisador, oxidam compostos orgânicos, promovendo a mineralização completa a CO₂ e água. O TiO₂ pode ser utilizado como partículas em suspensão ou imobilizado como um filme sobre um condutor. Em um sistema contendo um contra-eletrodo (CE), a aplicação de um potencial externo permite que o processo de FH seja eletroquímicamente assistido (FHE) e muito mais eficiente. A mistura de TiO₂ com WO₃ também pode aumentar a eficiência de degradação de contaminantes; como o WO₃ absorve na região do visível, promove maior aproveitamento da radiação solar. Nesta contribuição, avaliou-se a atividade fotocatalítica de eletrodos de filme poroso de TiO₂ e de TiO₂/WO₃ na degradação de EE2.

Resultados e Discussão

O eletrodo de TiO $_2$, um filme branco, foi preparado a partir de uma suspensão aquosa de TiO $_2$ Degussa P-25 contendo polietileno glicol; um filme foi depositado sobre um eletrodo transparente, vidro revestido com SnO $_2$:F (vidro-FTO), seguido por tratamento térmico (450 °C, 30 min). O eletrodo de TiO $_2$ /WO $_3$, de coloração amarelada, foi preparado por procedimento similar, após adicionar H $_2$ WO $_4$ à suspensão de TiO $_2$ (razão molar W/Ti=12%).

Imagens obtidas por microscopia eletrônica de varredura revelaram morfologia similar para ambos os eletrodos. Porém, o eletrodo de TiO_2/WO_3 apresentou maior atividade fotocatalítica para degradação do EE2 que o de TiO_2 , tanto na configuração FH como em FHE (com CE de Pt e aplicação de 0,7 V). Os estudos foram realizados sob irradiação proveniente de um simulador solar, a $(29\pm2)\,^{\circ}\text{C}$, para solução aquosa 0,1 mol L $^{-1}$ de

 Na_2SO_4 contendo concentração inicial C_0 =10 mg L^{-1} de EE2. A Fig. 1 apresenta a variação da concentração relativa do EE2 no decorrer do tempo, i.e, C_t/C_0 , estimada por medidas de fluorescência molecular para amostras de 5 mL de solução remediadas com eletrodos com 1 cm².

Figura 1. Variação da concentração relativa do hormônio no decorrer do tempo, para soluções remediadas em diferentes configurações.

Após 4 h sob irradiação, a concentração do EE2 nas soluções remediadas em FH e FHE com o eletrodo de TiO_2 correspondeu respectivamente a 6,0 e 4,4 mg L^{-1} e, com o eletrodo de TiO_2/WO_3 , a 5,0 e 3,8 mg L^{-1} . Para a amostra irradiada em um sistema similar na ausência de fotocatalisador estimou-se 9,2 mg L^{-1} . Neste mesmo intervalo de tempo, medidas da concentração de Carbono Orgânico Total indicaram a degradação de 15 e 17% no sistema FH e 21 e 23% no FHE, para os eletrodos de TiO_2 e de TiO_2/WO_3 .

Conclusões

O eletrodo de TiO₂/WO₃ apresentou maior atividade fotocatalítica para degradação de hormônio EE2 que o eletrodo de TiO₂. A presença do WO₃ aumenta o aproveitamento da radiação solar, resultando em maior eficiência fotocatalítica.

Agradecimentos

CNPq, Capes, Fapesp, INOMAT, FAEPEX-Unicamp

¹ Oliveira, H.G, Nery, D.C., Longo, C.; *App. Catal. B, Environ.* **2010**, 93, 205.