Estudo da partição do ácido clavulânico em sistema micelar de duas fases aquosas na presença de sulfato de amônio

Marcela de Siqueira C. Silva¹ (PG)*, Nathália B. M. dos Santos¹ (IC), Adalberto Pessoa Junior² (PQ), Carlota de Oliveira Rangel Yagui¹ (PQ). *masicas@usp.br

Palavras Chave: ácido clavulânico, extração líquido-líquido, sistemas micelares, purificação de biomoléculas

Introdução

O ácido clavulânico é um potente inibidor de β -lactamases obtido de $Streptomyces\ sp.$, sendo utilizado em associação com antibióticos β -lactâmicos para melhoria da eficiência destes. Sua purificação industrial envolve, principalmente, processos de extração líquido-líquido com solventes orgânicos e etapas cromatográficas. Assim, a busca por alternativas mais econômicas, simplificadas e ecológicas é de grande interesse e, neste contexto, sistemas micelares de duas fases aquosas (SMDFA) consistem em alternativa interessante às técnicas de purificação empregadas 1 .

Dentro deste contexto, o presente trabalho propôs o estudo de SMDFA como estratégia para purificação do ácido clavulânico em sistemas micelares constituídos por tensoativos não iônicos puros, na presença de sulfato de amônio, visando à futura aplicação destes sistemas para purificação do fármaco.

Resultados e Discussão

Os sistemas avaliados neste estudo foram formados pelos tensoativos Triton X-114 e Triton X-100. Os parâmetros estudados foram concentração inicial de tensoativo no sistema, temperatura de partição e concentração inicial de $(NH_4)_2SO_4$. O ácido clavulânico foi quantificado pelo método espectrofotométrico proposto por Bird *et al*².

A composição de cada sistema estudado está apresentada na Tabela 1. A adição de eletrólitos apresentou-se como alternativa efetiva para a redução da temperatura de separação de fases dos sistemas, o que favorece a estabilidade do fármaco. Destaca-se a presença de 1,2 M de (NH₄)₂SO₄ no sistema Triton X-100 que reduziu a temperatura do ponto de névoa de 63°C para 17°C.

Com relação à partição do fármaco, não houve variação significativa no coeficiente de partição (K_{AC} ~ 0,70) com o aumento da concentração do tensoativo, tanto para o sistema Triton X-114 quanto Triton X-100. Entretanto, para todos os ensaios, valores de K_{AC} inferiores a 1 foram obtidos, indicando que o ácido clavulânico apresentou maior afinidade pela fase pobre em micelas (fase diluída). Estes sistemas apresentaram valores máximos de rendimento na fase diluída (Y_{clavd}) em torno de 75%, 35° Reunião Anual da Sociedade Brasileira de Química

sendo que a porcentagem de ácido clavulânico não degradado nos sistemas permaneceu acima de 85%.

Devido ao seu tamanho, o ácido clavulânico não sofre efeito de exclusão pelo volume e conseqüente direcionamento para a fase diluída. Por outro lado, o efeito eletrostático devido à presença do sal também não foi suficiente para direcionar a partição do fármaco para a fase micelar.

Tabela 1. Partição do ácido clavulânico em sistemas não-iônicos/tampão McIlvaine pH 6,5.

Composição do Sistema	K _{AC}	Y _{clavd (%)}
Triton X-114 2%(p/p);		
0,25M (NH ₄) ₂ SO ₄ ;		
T = 18,6°C	0,72±0,10	80 ± 8
Triton X-114 4%(p/p);		
0,25 M (NH ₄) ₂ SO ₄ ;		
$T = 24,6^{\circ}C$	0,64±0,1	74 ± 2
Triton X-100 2%(p/p);		
$0.8M (NH_4)_2SO_4; T = 33^{\circ}C$	0,64±0,27	80 ± 6
Triton X-100 4%(p/p);		
$0.8M (NH_4)_2SO_4$; T = 39°C	0,53±0,08	75 ± 6
Triton X-100 4%(p/p);		
$1,2M (NH_4)_2SO_4; T = 17^{\circ}C$	0,71±0,17	75 ± 7

Conclusões

Dentre todos os sistemas estudados até o momento, estes foram os que apresentaram valores de recuperação na fase diluída superior a 70%. No entanto, novas condições serão estudadas a fim de aumentar a recuperação do fármaco nos sistemas, visando remoção de proteínas contaminantes de homogeneizados celulares por desnaturação prévia das mesmas e consequente partição para a fase oposta (micelar).

Agradecimentos

Apoio Financeiro: Fapesp e CNPq

¹ Universidade de São Paulo - Departamento de Farmácia, FCF/USP

² Universidade de São Paulo - Departamento de Tecnologia Bioquímico-Farmacêutica, FCF/USP

¹ Andrade, E.G.; Silva, M.S.C.; Haga, R.B.; Santos, V.C.; Pessoa-Jr, A.; Rangel-Yagui, C.O. Biotechnology and Applied Biochemistry, v.58, p.103-108, **2011**.

² Bird, E., Bellis, J.M., Gasson, B.C. Analyst, v. 107, p.1241–1245,

Sociedade Brasileira de Química (SBQ)