Avaliação de diferentes adsorventes na extração de agrotóxicos em mamão utilizando o método QuEChERS

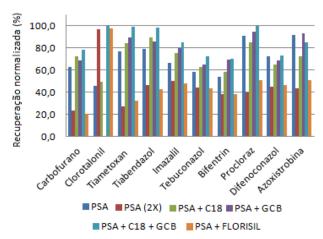
Graziele de A. Carvalho^{1,2,*} (PG), Rodolfo R. Guarin¹ (PQ), Claudiane B. de Araújo¹ (PQ), Paulo R. R. Mesquita^{1,2} (PG), Wilson A. Lopes² (PQ), Frederico de M. Rodrigues¹ (PQ). *g.acarvalho@hotmail.com

- 1-Empresa Baiana de Desenvolvimento Agrícola S.A. EBDA, 40170-115, Salvador, BA, Brasil;
- 2- Instituto de Química Universidade Federal da Bahia (UFBA), 40170-115, Salvador, BA, Brasil.

Palavras Chave: agrotóxicos, fruticultura, mamão, adsorventes, QuEChERS, GC-MS

Introdução

O modelo agrícola brasileiro baseia-se na utilização extensiva de agrotóxicos, os quais são importantes para reduzir as perdas geradas pelo ataque das pragas, melhorando a produção e a rentabilidade da lavoura. Entretanto, a aplicação de agrotóxicos de forma indevida tem provocado a contaminação de solos, águas e, sobretudo, alimentos. Na Bahia, essa situação é preocupante, uma vez que o Estado é um dos principais produtores e exportadores de frutas frescas do país, a exemplo do mamão. Contudo, a detecção de resíduos de agrotóxicos em níveis cada vez mais baixos tem sido um desafio. Neste contexto, um dos principais métodos de extração de agrotóxicos utilizados atualmente é o QuEChERS, devido a vantagens tais como rapidez, baixo custo, eficiência, robustez e segurança. Sendo assim, este trabalho teve como objetivo avaliar a influência de diferentes adsorventes na extração de agrotóxicos adicionados a amostras de mamão utilizando o QuEChERS.


Resultados e Discussão

Utilizando procedimento experimental descrito na literatura¹, foram adicionados à amostra de 5 g de mamão os padrões analíticos dos agrotóxicos carbofurano, clorotalonil, tiametoxan, tiabendazol, imazalil. tebuconazol. bifentrin. procloraz. difenoconazol e azoxistrobina em nível fortificação de 0,1 mg Kg⁻¹. Foram utilizados os adsorventes primary secundary amine (PSA), C18, graphitized carbon black (GCB) e florisil com o objetivo de avaliar qual adsorvente, ou combinação destes, possuía maior capacidade de retenção dos interferentes da matriz (mamão) sem reter também os analitos (Tabela 1).

Tabela 1. Adsorventes utilizados.

Tratamento	Adsorventes	Quantidade de cada adsorvente (mg)
1	PSA	75
2	PSA	150
3	PSA + C18	75
4	PSA + GCB	75
5	PSA + C18+ GCB	75
6	PSA + Florisil	75

Os analitos extraídos foram determinados por GC-MS e as recuperações calculadas para cada tratamento (Figura 1).

Figura 1. Recuperação dos agrotóxicos utilizando diferentes adsorventes.

As melhores taxas de recuperação foram obtidas utilizando-se a mistura de adsorventes PSA, C18 e GCB, seguida pela mistura de PSA e GCB. Os valores de recuperação mais baixos foram obtidos quando se utilizou 150 mg de PSA e PSA com Florisil. Considerando que a função dos adsorventes é reter interferentes da matriz sem reter os analitos, pode-se supor que a maior quantidade de PSA usada também contribuiu para retenção de agrotóxicos presentes na amostra. Quanto ao florisil, é conhecido que exerce uma forte interação com diferentes tipos de agrotóxicos, o que pode ser confirmado pelos resultados obtidos.

Conclusões

A extração utilizando a mistura de adsorventes PSA, C18 e GCB apresentou os melhores resultados, com taxas de recuperação variando de 78 a 111%.

Agradecimentos

A FAPESB, CNPq e ao MDA pelo apoio financeiro.

¹ Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J.. *J. AOAC Int.*. **2003**, 86, 412.

² Walorczyk, S.; Drozdzynski, .; Gnusowski, B.. Talanta. 2011, 85, 1856.