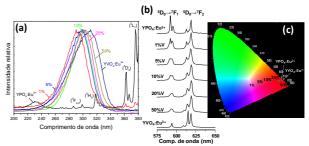
Controle das propriedades espectrocópicas de fosfovanadatos de ítrio e európio através da variação da concentração de íons VO₄³⁻

Jonathan C. Batista (IC), Paulo C. de Sousa Filho (PG), Osvaldo A. Serra* (PQ)

Laboratório de Terras Raras - Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP.

Palavras Chave: Terras Raras, Fosfatos, Vanadatos, Luminescência.


Introdução

Por mais de meio século, luminóforos a base de Terras Raras (TR) tem sido os mais importantes luminescentes materiais em vários campos tecnológicos. 1,2 Em particular, oxossais de TR (como fosfatos e vanadatos) são muito importantes como luminóforos devido a suas altas estabilidades físicoquímicas e altas eficiências de luminescência, sendo muito promissores para aplicações em displays de plasma, lâmpadas sem Hg e iluminação baseada em LEDs. Assim, o aprimoramento da qualidade de luminóforos a base de fosfovanadatos ainda é um importante tópico de pesquisa para a adequação desses compostos às suas aplicações tecnológicas. Dessa forma, esse trabalho visa à síntese e à avaliação do efeito da concentração de íons VO₄3na luminescência de fosfatos de ítrio e európio.

Resultados e Discussão

Os sólidos foram obtidos por uma modificação do método Pechini, utilizando-se como precursores $TR(NO_3)_3$, $H_5P_3O_{10}$ e NH_4VO_3 . As concentrações dos precursores foram ajustadas, de modo a se obterem fosfovanadatos de composição $(Y_{0,99}Eu_{0,01})(P_{1-x}V_x)O_4$, sendo x=0,01, 0,05, 0,10, 0,20, 0,50 e 1,00. Os materiais foram caracterizados por MEV, DRX, espectroscopia vibracional (FTIR-Raman) e espectroscopia de luminescência.

Os sólidos possuem morfologia similar (esférica, ~50 nm, parcialmente agregados), como resultado das condições similares de síntese. Além disso, todos as composições apresentam a mesma estrutura tetragonal (I4₁/amd) da xenotima, com aumento gradual dos parâmetros de cela com maiores concentrações de VO₄³⁻. No entanto, embora a estrutura forneça sítios D_{2d} para os íons Eu³⁺ em todos os casos, as propriedades luminescentes dos compostos (Fig. 1, Tabela 1) são consideravelmente alteradas. aumento progressivo da razão I₀₂/I₀₁, mesmo com a simetria D_{2d} constante, fornece um exemplo de que esse parâmetro não depende unicamente do caráter centrossimétrico do sítio ocupado. Essa observação, bem como o comportamento dos parâmetros, indica que a introdução de íons VO₄³⁻ na matriz de YPO₄ aumenta a polarizabilidade dos sítios disponíveis aos íons TR, conferindo um caráter mais covalente às ligações TR-O.

Fig 1. (a) Espectros de excitação (λ_{em} =616 nm), (b) espectros de emissão (exc.: $\lambda_{máx-BTC}$) e (c) diagrama de cromaticidade.

A ocorrência de ambientes mais polarizáveis na presença de íons VO₄³⁻, relacionada à menor dureza desses grupos, resulta em uma alteração da estrutura de bandas dos sólidos, levando a um aumento da contribuição do mecanismo de acoplamento dinâmico para as emissões do Eu³⁺.

Tabela 1. Parâmetros espectroscópicos do Eu³⁺ (nível ⁵D₀) obtidos para os sólidos Y(P,V)O₄:Eu³⁺

% V	τ	η	I ₀₂ /I ₀₁	Ω_2	Ω_4
	(ms)	(%)		(10 ⁻²⁰ cm ²)	(10 ⁻²⁰ cm ²)
0	2.8	72	0.9	1.6	2.2
1	2.7	90	1.8	3.0	1.9
5	2.2	85	2.4	4.0	1.7
10	1.9	84	3.0	5.1	1.9
20	1.4	91	5.1	8.5	2.4
50	1.2	80	5.3	9.0	2.2
100	1.0	91	8.4	13.7	2.4

Conclusões

A metodologia empregada permitiu a obtenção de luminóforos vermelhos nanoestruturados, com diferentes concentrações de VO₄³⁻ em YPO₄. Além das alterações estruturais esperadas, as características luminescentes como máximo de excitação, cromaticidade e tempo de vida podem ser ajustadas através da concentração de VO₄³⁻. As observações espectroscópicas foram relacionadas às propriedades químicas nos sólidos obtidos, concluindo-se que maiores concentrações de VO₄³⁻ em YPO₄ levam a ambientes químicos mais polarizáveis ao redor dos íons Eu³⁺, bem como a ligações TR-O de caráter mais covalente.

Agradecimentos

CAPES, CNPg/inct-INAMI e FAPESP.

¹ Jüstel, T.; Nanoscale **2011**, 3, 1947.

² Höppe, H.A.; Angew. Chem. Int. Ed. 2009, 48, 3572.

³ de Sousa Filho, P.C.; Serra, O.A.; *J. Fluoresc.* **2008**, *18*, 329.