Síntese e avaliação antimalárica e antitumoral de análogos de alcalóides marinhos.

Aline B. de Lima^{1,2} (IC)*, Mariana L. Silveira³ (IC), Renata C. de Paula¹ (PG), Flaviane F. Hilário³ (PG), Juliana R.C.S. Pereira^{1,2} (PG), Rosemeire B. Alves³ (PQ), Rossimiriam P. de Freitas³ (PQ), Luciana M. Silva² (PQ), Fernando P. Varotti¹ (PQ), Gustavo H.R. Viana¹ (PQ). albrelima@yahoo.com.br

Palavras Chave: Alcalóides marinhos, 3-alquilpiridínicos, antitumoral, antiplasmodial.

Introdução

Alcalóides marinhos representam uma classe de metabólitos secundários encontrados em diversos organismos marinhos. A potente atividade biológica associada a estes compostos justifica a síntese de análogos que poderão servir como protótipos de medicamentos para o tratamento de doenças virais, inflamações, câncer, malária, entre outras.

O presente trabalho descreve a síntese de oito novos análogos dos alcalóides marinhos teoneladina C e viscosalina bem como a avaliação da ação *in vitro* desta série de moléculas contra *P. falciparum*, agente etiológico da malária e duas linhagens de células tumorais humanas, melanoma (SK-MEL-28) e carcinoma de cólon (RKO).

Resultados e Discussão

A síntese dos análogos da teonaladina C (compostos **5a-b**, **6a-b**, **7a**, **8a** e **10b**) e da viscosalina (composto **9a**) encontra-se descrita no Esquema 1. Todos os compostos foram obtidos com bons rendimentos e caracterizados por técnicas espectroscópicas usuais.

Esquema 1. Síntese dos análogos da teonaladina C e da viscosalina.

Os resultados dos bioensaios realizados para os compostos sintetizados encontram-se na Tabela 1. O composto **10b** foi mais ativo contra SK-MEL-28 e

RKO. Entretanto, **5b** foi mais seletiva para células da linhagem RKO. Por meio do ensaio de TUNEL observou-se que esses compostos são capazes de induzir apoptose nas linhagens celulares. Contra *P. falciparum* o composto mais ativo e seletivo foi **9a**.

Tabela 1. Atividade antiplasmodial e antitumoral (IC_{50}) *in vitro*.

Composto	IC50 (μM) ± S.D.		
	RKO	SK-MEL-28	P. falciparum
5b	2.02 ± 0.058	5.39 ± 0.577	4.33 ± 0.87
6a	3.95 ± 0.179	5.03 ± 0.898	17.96 ± 3.59
6b	7.00 ± 0.936	5.46 ± 1.092	6.24 ± 0.31
7a	21.67 ± 3.292	23.32 ± 8.779	8.50 ± 0.14
8a	>21.52	>21.52	43.04 ± 4.30
9a	3.21 ± 0.135	4.23 ± 0.676	<3.38
10b	1.90 ± 0.024	2.85 ± 0.357	<4.76
Etoposídeo	0.20 ± 0.010	0.52 ± 0.023	-
CQ	-	-	0.625 ± 0.003

Esses compostos apresentaram baixa citotoxicidade quando testados contra uma linhagem celular não tumoral (WI-26 VA4, fibroblasto de pulmão), indicando uma ação seletiva quando comparado com as linhagens tumorais e contra *P. falciparum*.

Conclusões

Verificou-se que os compostos sintetizados foram ativos contra *P. falciparum* e linhagens tumorais de maneira seletiva. Sugere-se que a citotoxicidade, com base no ensaio de TUNEL realizado com **5b**, está associada à indução de apoptose das células tumorais. Esses compostos poderão ser otimizados visando à obtenção de novas moléculas mais ativas, reforçando que esta classe é promissora para o desenvolvimento de fármacos.

Agradecimentos

Ao CNPq e à FAPEMIG pelo suporte financeiro concedido

¹ Universidade Federal de São João del Rei - Campus Centro-Oeste, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brasil.

² Laboratório de Biologia Celular e Inovação Biotecnológica, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, Belo Horizonte, MG, 30535-380, Brazil.

³ Departamento de Química, ICEx, UFMG, Av. Pres. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brasil.

¹ Hilário, F.F. et al. Chem Biol Drug Des. **2011**, 78, 477.

² Pereira, J.R.C.S. et al. Biomedicine & Preventive Nutrition 2012 (in press)