Análise de constituintes em blendas poliméricas contendo o fármaco Piroxicam por Espectroscopia Raman de Imagem e Quimiometria

Guilherme L. Alexandrino* (PG) e Ronei J. Poppi (PQ)

Instituto de Química – Unicamp, Caixa Postal 6154, CEP 13084-970, Campinas – SP, Brasil. email: guialexandrino@igm.unicamp.br

Palavras Chave: Imagens hiperespectrais, Raman, blendas poliméricas, Piroxicam, Quimiometria

Introdução

Polímeros são um dos principais materiais utilizados como reguladores na liberação controlada de fármacos, com destaque para os derivados de celulose, como etilcelulose (EC) e hidroxipropilmetil-celulose (HPMC), diferentes polimetacrilados (Eudragit ®) e derivados polivinílicos (Kollicoat ®)¹. Em espectroscopia de imagem, um espectro (vibracional, fluorescência, etc) é obtido em cada ponto XY da superfície da amostra (denominado pixel), obtendo-se no final um hipercubo espectral. Assim, informações quali e quantitativas podem ser obtidas dos dados multivariados empregando-se quimiometria. O espectro obtido em cada pixel pode ser considerado como uma mistura dos espectros de cada espécie química ponderadas pelas suas respectivas concentrações (eq. 1). Assim, a matriz bilinear D (XY,comprimento de onda) de uma amostra contendo i espécies pode ser decompostas três novas matrizes; C(concentrações), S(espectros dos constituintes puros) e matriz de erros E. Quando S é conhecida, C pode ser obtida através de mínimos quadrados clássicos (classical least square, CLS), eq. 2.

$$D = CS^{T} + E$$
 (1)

$$C = DS(S^{T}S)^{-1}$$
 (2)

A partir de **C**, os mapas de concentrações dos constituintes podem ser construídos, e a heterogeneidade da amostra pode ser estudada².

Resultados e Discussão

Imagens hiperespectrais (IH) foram obtidas a partir de um filme constituído de EC, HPMC e PEG-400 nas proporções em massa 0,4, 0,4 e 0,2, com Piroxicam (PIR) 1/10 fármaco/polímeros, utilizando o equipamento Raman Station 400F (Perkin Elmer). A área varrida foi de 7100x7100 µm², com resolução espectral de 4 cm⁻¹ e tamanho de pixel de 100 µm. O filme foi preparado pelo método de evaporação do solvente, utilizando a mistura 70/30 etanol/diclorometano na proporção (polímeros+fármaco)/solvente 1/10. Para tratamento dos dados, utilizou-se a faixa espectral 770-1005 cm⁻¹ com os pré-processamentos; normalização, alisamento polinomial Savitzky-Golay (janela 5, grau 2) seguido de 1ª derivada. Com a matriz S obtida previamente, o método CLS foi aplicado na matriz dos espectros do filme,

35ª Reunião Anual da Sociedade Brasileira de Química

obtendo-se os mapas de concentrações relativas de cada espécie (**Fig. 1**):

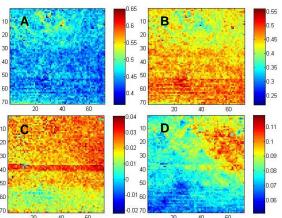


Figura 1. Mapas de concentrações de EC (A), HPMC (B), PEG(C) e PIR(D).

O PIR apresentou o erro de previsão médio de aproximadamente 2%, o menor valor comparação com os erros dos polímeros. Entretanto, sua distribuição na amostra foi mais heterogênea (Fig. 3D), diferentemente polímeros EC e HPMC, cujos perfis de distribuição foram mais homogêneos, complementares e com valores médios previstos mais próximos entre si (< 1%), portanto, de acordo com suas respectivas estequiometrias na formulação. A concentração média prevista para o PEG foi bem menor do que a esperada segundo a formulação, provavelmente devido a mudanças espectrais decorrentes de interações intermoleculares.

Conclusões

IH possibilita mapeamento químico direto de filmes contendo fármacos, cuja heterogeneidade dos constituintes é fator importante para compreensão e regulação de suas propriedades de "drug delivery".

Agradecimentos

Ao CNPq, pela bolsa de doutorado.

¹ Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R.J. e Bodmeier, R. J. Contr. Rel. 2008, 125, 1.

² Prats-Montalbán, J.M., de Juan, A. e Ferrer, A. *Chemom. Intell. Lab. Sys.* **2011**, 107, 1.