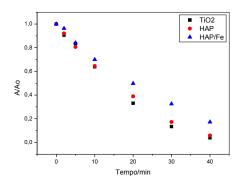
Estudo da fotodegradação do corante Indigo Carmim utilizando hidroxiapatita.

Camilla Ferradoza Batalioto (IC)^{1*}, Dirceu Lickowski (IC)¹, Cleber Antonio Lindino (PQ)¹.

¹Laboratório de Estudos em Química Analítica Limpa, GIPEFEA, Departamento de Química, Universidade Estadual do Oeste do Paraná.

*kahferradoza@hotmail.com

Universidade Estadual do Oeste do Paraná, Rua da Faculdade, 645, Toledo-Paraná, Caixa Postal 520, CEP 85903-000, Fone: (45)3379-7000.


Palavras Chave: catálise, remediação, Química Verde.

Introdução

A utilização de catalisadores como uma ferramenta em processos de remediação de contaminações é importante, pois cada dia novas substancias são introduzidas no meio ambiente provenientes de efluentes de indústrias, esgoto domestico, resíduos agrícolas, etc. A síntese de hidroxiapatita com dopantes apropriados (metais de transição) podem se tornar uma fonte de catalisadores heterogêneos de ampla aplicação em processos de remediação e prevenção de poluição em ecossistemas. Os reagentes utilizados foram com pureza grau analítico e a água purificada por osmose reversa. Foram preparadas hidroxiapatitas por via úmida, utilizando metodologias disponíveis na literatura¹, com e sem dopante Fe, comparando-se com TiO2. A eficiência de cada material como catalisador foi estudada na degradação do corante Indigo Carmim (CI 73015), utilizando-se uma lâmpada de mercúrio de 80 W (sem a proteção) a 13,5 cm da amostra e acompanhamento degradação da por UV-visível espectrofotometria utilizando espectrofotômetro Shimatzu UV-1601 PC, após centrifugação da solução.

Resultados e Discussão

A Figura 1 apresenta o perfil de fotodegradação do corante com diferentes catalisadores. A Tabela 01 apresenta os percentuais de degradação com o tempo.

Figura 1. Fotodegradação do corante Indigo Carmim na concentração de 4,4 x 10⁻⁵ mol L⁻¹, com proporção dos pós e da solução 1:1. HAP:

hidroxiapatita sem dopante. HAP-Fe: hidroxiapatita dopada com Fe³⁺.

Tabela 1. Percentual de degradação pelo tempo.

% de degradação			
Tempo	TiO ₂	HAP	HAP/Fe
(min.)			
0	0	0	0
10	36,08	35,45	30,01
20	66,90	61,04	50,20
30	86,65	82,73	67,46
40	96,16	94,16	82,74

Observa-se hidroxiapatita que а apresenta praticamente a mesma eficiência de degradação que o TiO₂ normalmente utilizado nestes processos. HAP-Fe tem menor eficiência, catalisador tem comprimento de onda de absorção máxima em 310 nm, enquanto que a HAP tem máximo em 207 nm, absorvendo em regiões de maior energia do espectro². No estudo de fotodegradação sem qualquer catalisador, no tempo de 40 minutos, degradou-se 13,13 % do corante. Verificou-se que nos gráficos de InA/A₀ há duas regiões lineares (R²>0,98) para a fotodegradação com TiO2 e HAP, com alteração na ordem de reação, provavelmente devido a produtos de degradação que absorvem radiação na mesma região do corante. Os valores de k para o tempo entre 0 a 20 min (R²>0.99) são de 0.1078; 0.0472 e 0.0356 min⁻¹ TiO₂. HAP e para respectivamente.

Conclusões

Os catalisadores baseados em HAP mostraram eficiência na degradação do corante estudado comparável ao TiO₂. Com menor custo e menor impacto ambiental, a HAP pode ser utilizada de acordo com a filosofia da Química Verde.

Agradecimentos

Ao CNPq/PIBITI pela bolsa concedida.

¹ Souza, J. L.; Martin, N.; Oliveira, S. R.; Lindino, C. A. Acta Scientiarum. Technology, v. 30, n°2, **2008**, p. 231-236.
² Araújo, T.S.; Souza, S.O.; Souza, E.M.B.; J. C. *J. of Phys. Conference*

² Araújo, T.S.; Souza, S.O.; Souza, E.M.B.; J. C. J. of Phys. Conference Series. **2010**, 249, 1.