Influência de mediadores em células solares nanocristalinas sensibilizadas por corantes naturais

Tânia A. F. Silva¹ (IC), Neyde Y. Murakami Iha² (PQ), André S. Polo¹ (PQ)*

* andre.polo@ufabc.edu.br

Palavras Chave: Células solares sensibilizadas por corantes, conversão de energia, mediador.

Introdução

A qualidade da vida humana depende da disponibilidade de fontes de energia e o aumento da sua demanda nos países em desenvolvimento leva a busca por alternativas que não poluam o meio ambiente.¹

Neste contexto, as células solares sensibilizadas por corante, DSSCs, têm sido bastante investigadas desde 1991, principalmente devido ao seu desempenho, baixo custo de produção e estabilidade da célula a longo prazo.²

As DSSCs são dispositivos que convertem energia solar em elétrica, constituídas por dois eletrodos num arranjo do tipo sanduíche. Entre os dois eletrodos há uma camada de mediador, geralmente l'/l₃ em nitrilas, que serve para regenerar o corante oxidado.

Neste trabalho, foram realizadas investigações da influência da composição dos mediadores no desempenho de células solares sensibilizadas por extrato de jabuticaba.

Resultados e Discussão

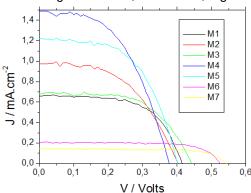

Utilizou-se sete mediadores para avaliar o desempenho das DSSCs, todos contendo o par redox iodo/iodeto de lítio dissolvidos em 10 mL de mistura de 90:10 acetonitrila:3-metil-2-oxazolidinona, ACN:NMO, ou 85:15 acetonitrila:valeronitrila, ACN:VN. Também fez parte da composição dos mediadores diferentes aditivos como o tiocianato de guanidínio, GuSCN, e a 4-tert-butilpiridina, TBPy, Tabela 1.

Tabela 1. Composição dos mediadores

	Mediadores							
Solvente	ACN:NMO			ACN:VN				
Comp./ mol L ⁻¹	1	2	3	4	5	6	7	
[l ₂]	0,03	0,03	0,03	0,03	0,03	0,03	0,03	
[Lil]	0,3	0,6	0,6	0,6	0,6	0,6	0,6	
[GuSCN]	-	-	0,1	-	0,1	-	0,1	
[TBPy]	-	-	-	-	-	0,5	0,5	

O desempenho das DSSCs foi avaliado por curvas I-V determinadas em um simulador solar da

Newport/Oriel, modelo 91160, e um potenciostato/galvanostato, PAR-273A, Figura 1.

Figura 1. Curvas I-V para diferentes células solares sensibilizadas por extrato natural de jabuticaba, utilizando diferentes mediadores.

Tabela 2. Parâmetros fotoeletroquímicos das DSSCs preparadas com os diferentes mediadores

Mediador	V _{oc} (V)	J _{SC} (mA.cm ⁻²)	ff	η (%)
1	0,41	0,66	0,63	0,17
2	0,40	0,97	0,52	0,23
3	0,44	0,68	0,60	0,20
4	0,37	1,49	0,51	0,29
5	0,40	1,22	0,57	0,28
6	0,52	0,20	0,73	0,080
7	0,54	0,14	0,74	0,059

Observa-se na Figura 1 e Tabela 2 que as células solares sensibilizadas por corante natural apresentam melhor desempenho quando o mediador possui uma concentração de 1:20 de iodo:iodeto de lítio em ACN:VN, mediador 4.

Conclusões

Conclui-se que diferentes aditivos e solventes no mediador influenciam o desempenho das DSSCs.

Agradecimentos

Agradecemos ao CNPq (577256/2008-4), à UFABC e Pilkington.

¹ Grupo de Síntese, Química Biológica e Fotociência, UFABC, Santo André, Brasil.

² Laboratório de Fotoquímica Inorgânica e Conversão de Energia, IQ-USP, São Paulo, Brasil.

¹ Grätzel, M. Chem. Lett. 2005, 34, 8.

² Kroon, J. M., et al. Prog. Photovolt: Res. Appl. 2007, 15,1