# Extração de metais a partir de sucatas eletrônicas por eletro-oxidação

\*1,2 Priscila Martins da Rocha (IC), <sup>1</sup>Luis G. Santos Sobral (PQ), <sup>1</sup>Carlos E. G. de Souza (PQ) \*priscilarocha15@gmail.com

<sup>1</sup>Centro de Tecnologia Mineral (CETEM); <sup>2</sup>Fundação Técnico-Educacional Souza Marques;

Palavras Chave: Eletrooxidação, Resíduo eletrônico, Reciclagem.

#### Introdução

O crescente avanço tecnológico acelera a obsolescência de equipamentos eletrônicos, fazendo com que os mesmos sejam substituídos em um período cada vez mais curto, gerando um aumento na produção de resíduos eletrônicos [1]. Esses equipamentos são constituídos de um grande número de metais, variando entre metais preciosos até elementos recalcitrantes, que se dispostos no meio ambiente, podem causar grande impacto ambiental [2].

# Metodologia

A amostra empregada no estudo é proveniente de computadores pessoais obsoletos. Os componentes internos foram removidos e encaminhados para uma etapa de pré-tratamento em um moinho de facas e posterior classificação que apontou P<sub>80</sub> em 2mm. Os ensaios de eletro-oxidação de resíduo eletrônico [3], contendo, majoritariamente, cobre metálico, foram realizados num reator de vidro de 1 litro com tampa vazada para a inserção dos eletrodos, anodo DSA (dimensionally stable anodes) e catodos tridimensionais (esponja de níquel reticulado). O material a ser lixiviado foi suspenso mecanicamente, numa razão sólido-líquido de 1:10, e o pH inicial da suspensão ajustado em 0,5 com ácido clorídrico (HCI). A corrente contínua foi fornecida por uma fonte de alimentação por um período de 6h para todos os ensaios.

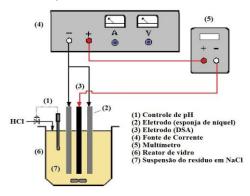



Figura 1. Sistema reacional de eletro-oxidação.

As principais reações envolvidas podem ser representadas pelas seguintes equações iônicas a partir do suprimento de corrente elétrica, com geração, na superfície anódica, de cloro gasoso devido à oxidação dos íons cloreto:

$$2Cl^- \leftrightarrow Cl_2^{\uparrow} + 2e \tag{1}$$

$$2H_2O + 2e \leftrightarrow H_2^{\uparrow} + 2OH^{-} \tag{2}$$

$$Cl_2^{\uparrow -} + H_2O \leftrightarrow H\tilde{C}lO + H^+ + Cl^- \tag{3}$$

$$H\bar{C}lO \leftrightarrow ClO^- + H^+$$
 (4)

$$H^{+} + OH^{-} \leftrightarrow H_{2}O$$
 (5)  
 $2HCl + ClO^{-} \leftrightarrow ClO_{3}^{-} + 2H^{+} + 2Cl^{-}$  (6)

## Resultado e Discussão

**Tabela 1.** Extração dos Metais de interesse em porcentagem.

| Ensaios |                       | Extração (%) |       |       |       |       |       |
|---------|-----------------------|--------------|-------|-------|-------|-------|-------|
|         |                       | Au           | Ag    | ΑI    | Cu    | Pb    | Fe    |
| 1       | [NaCl]=0,5M<br>I=3,0V | 85,24        | 85,80 | 68,38 | 54,12 | 54,12 | 43,86 |
| 2       | [NaCl]=1,0M<br>I=3,0V | 91,13        | 89,94 | 89,80 | 71,14 | 71,14 | 82,24 |
| 3       | [NaCl]=2,0M<br>I=5,0V | 96,77        | 94,38 | 80,00 | 41,33 | 64,91 | 67,20 |
| 4       | [NaCl]=0,5M<br>l=5,0V | 97,83        | 84,29 | 98,79 | 74,21 | 56,90 | 47,83 |

A geração de agentes oxidantes *in situ* pode ser influenciada pela variação das condições experimentais, refletindo na quantidade de metais liberados para a solução durante o processo de eletro-oxidação e a conseqüente eletrodeposição, de alguns desses elementos, nos catodos tridimensionais.

#### Conclusões

A extração de ouro e prata ocorreu quase que na íntegra. No caso dos outros elementos majoritários será necessário se estender o tempo do processo eletrolítico para a total extração dos mesmos ou a utilização de amostra com um menor tamanho de partícula.

## Agradecimentos

Agradecimentos ao CETEM e ao PIBIC/CNPq.

<sup>&</sup>lt;sup>1</sup>SILVA, B. D.; MARTINS, D. L.; OLIVEIRA, F. C. Resíduos eletrônicos no Brasil. Santo André, 2007. Revisão em Abril de 2008 – Felipe Fonseca. Disponível em: <a href="http://www.lixoeletronico.org/pagina/pesquisa/">http://www.lixoeletronico.org/pagina/pesquisa/</a>. Acesso em: 14/02/2011.

<sup>&</sup>lt;sup>2</sup>SANTOS, F.H.S.; SOUZA, C.E.G. Séria Tecnologia Ambiental – Resíduos de origem eletrônica. Rio de Janeiro, CETEM/MCT, n17, 55P. 2010.

<sup>&</sup>lt;sup>3</sup>SOBRAL, L.G.S; LIMA, R.B.; SOUZA, C.E.G., MORI, V. Relatório Técnico: Recuperação de cobre de um concentrado de flotação de cobre. Rio de Janeiro, Brasil, Centro de Tecnologia Mineral, 76p. 2008.