Avaliação da atividade antioxidante, fenóis totais e perfil cromatográfico de azeites de oliva monovarietais de cultivares do RS

Marcos Felipe Pinheiro¹(IC)*, Lucilene Dornelles Mello¹(PQ)

*mfelipepinheiro@gmail.com

Palavras Chave: Olea europaea L., Antioxidante, Azeite de Oliva.

Introdução

Evidências científicas têm mostrado que derivados de Olea europaea L., em especial o azeite de oliva propriedades vêm apresentando importantes biológicas, tais como: potente ação moduladora de radicais livres¹, ação anticancerígena², ação bactericida³ e virótica contra vírus, retrovírus, levedura, bactéria, fungos е outros microorganismos⁴. Neste trabalho, realizaram-se estudos físico-químicos e do potencial antioxidante de azeite de oliva monovarietais de cultivares do RS.

Resultados e Discussão

A Tabela 1 mostra a avaliação antioxidante e de fenóis totais para as amostras de azeite de oliva, que foram obtidas por prensagem a frio de frutos da variedade Arbequina.

Tabela 1. Determinação do teor de fenóis totais^a e avaliação percentual da atividade antioxidante^b (% ASRL), atividade quelante^c (% AQ) e poder redutor^d dos azeites de oliva.

dos azenes de onva.					
Parâmetro ∖ Amostra	Azeite 1	Azeite 2			
Fenóis totais	527,00 ± 42,10	493,20 ± 44,10			
% ASRL	86,70 ± 3,63	84,20 ± 2,00			
% AQ	25,00 ± 1,11	24,22 ± 2,40			
% Poder Redutor	35,10 ± 2,00	21,42 ± 4,10			

^amg ácido cafeico/L conforme procedimento padrão de Folin-Ciocalteau⁵, ^bconforme o ensaio do radical DPPH•, ^{c,d}conforme procedimento descrito por Tang e col. e Yildrim e col.⁶

Com o objetivo de avaliar a identidade e o grau de pureza dos azeites, também foram determinados parâmetros físico-químicos como os índices de iodo, saponificação, peróxidos, Bellier, refração, determinação da densidade relativa, absortividade específica em 232nm e 270nm e acidez. A caracterização físico-química dos azeites apresentou valores satisfatórios e se enquadraram dentro da faixa exigida pela legislação brasileira.

A Tabela 2 mostra a determinação do perfil cromatográfico dos azeites. As amostras apresentaram uma composição característica de

azeite de oliva puro conforme a Legislação Brasileira em concordância com o *Codex Alimentarius*.

Tabela 2. Composição em ácidos graxos* (g%) dos azeites de oliva, exigida pela Legislação Brasileira⁸.

Ácidos	Legislação	Azeite 1	Azeite 2
graxos			
C 16:0	7,5-20,0	18,0	19,0
C 17:0	≤ 0,3	0,10	0,10
C 18:0	0,5-5,0	1,63	1,53
C 20:0	≤ 0,6	0,40	0,40
C 22:0	≤ 0,2	0,10	0,10
C 24:0	≤ 0,2	0,10	0,10
C 16:1	0,3-3,5	2,29	3,15
C 17:1	≤ 0,3	0,19	0,19
C 18:1	55,0-83,0	59,90	57,10
C 20:1	≤ 0,4	0,30	0,20
C 18:2	3,5-21,0	11,80	13,60
C 18:3	≤ 1,0	0,76	0,57

*Conforme procedimento de cromatografia em fase gasosa de acordo com o método de Hartman e Lago⁷. A identificação dos diferentes tipos de ácidos graxos foi realizada por comparação do tempo de retenção dos ácidos graxos das amostras e padrões por co-cromatografia. A quantificação foi realizada por normalização de área e os resultados foram expressos em g/100g de amostra.

Conclusões

Os azeites de oliva apresentaram altos teores de fenóis totais e boas respostas de atividade antioxidante. Os resultados dos parâmetros físico-químicos e perfil cromatográfico de ácidos graxos classificaram os azeites como virgem extra.

Agradecimentos

Ao programa PBDA e a Associação dos Olivicultores da Região da Campanha e EMATER-RS, pelas amostras de azeite de oliva.

¹Universidade Federal do Pampa – Campus Bagé, RS

¹ Hayes, J. E. et al. *Food Chem.* **2011**, 126, 948.

² Goulas, V. et al. J. Agric. Food Chem, **2010**, 58, 3303.

³ Markin, D.; Duek, L.; Berdicevsky, I. Mycoses, 2003, 46, 132.

⁴ Visioli, F.; Galli, C. Crit. Rev. Food Sci. Nutr., 2002, 42, 209.

⁵ Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. *Methods Enzymology*, **1999**, 299, 152.

⁶ Tang, S.Z. et al. *Food Chem*, **2002**, 76, 45; Yildirim, A. et al. *J. Agric. Food Chem.*, **2001**, 49, 4083.

⁷ Hartman, L.; Lago, R.C.A. Lab. Pract., **1973**, 22, 475.

⁸ Brasil. MS. Anvisa.Resolução. RDC nº 270, 22 de setembro de 2005. DOU, 2005, Seção 1, nº 184.