Cristais Líquidos Quirais Derivados de 1,2,4-Oxadiazol

Rafael Levi Coelho (PG)^{1*}, lêda Maria Begnini (PQ)², Adriana Demmer da Silva (PG)², Thiago Caique Alves (PG)², Renato Liberato Dallabona (PG)²

Palavras Chave: cristais líquidos, 1,2,4-oxadiazol, síntese orgânica.

Introdução

Heterociclos de cinco membros, como o 1,2,4-oxadiazol, tem sido estudados extensivamente em inúmeros trabalhos^{1,2,3}. Quando introduzido entre centros rígidos, favorece o aparecimento de mesomorfismo, elevando a polarizabilidade e alterando a anisotropia geométrica.

A quiralidade em cristais líquidos modifica o alinhamento e o macro-arranjo molecular. Como as mesofases são fluidas, porém anisotrópicas, as propriedades físicas do mesógeno também são modificadas⁴. Este trabalho relata a síntese e o estudo das propriedades mesomórficas de uma série de cristais líquidos quirais, de forma a complementar os trabalhos apresentados no XVII e XVIII Encontros de Química da Região Sul.

Resultados e Discussão

A série de ésteres quirais líquido cristalinos $\bf 3$ foi sintetizada conforme descrito no *Esquema I*, reagindo-se os precursores $\bf 1$, 3,5-difenil-1,2,4-oxadiazóis ácidos com diferentes cadeias carbônicas, por esterificação com (S)-(-)-2-metil-1-butanol $\bf 2$, em DCC, DMAP e CH₂Cl₂.

$$R = \begin{bmatrix} a. & C_{6}H_{13} & d. & C_{14}H_{29} \\ b. & C_{8}H_{17} & e. & C_{16}H_{33} \\ c. & C_{12}H_{25} \end{bmatrix}$$

Esquema I.

Os ésteres quirais **3** foram caracterizados por técnicas espectroscópicas de IV e RMN de ¹H e de ¹³C, onde **3a** e **3b** já foram discutidos em trabalhos anteriores. Assim, **3c**, **3d** e **3e** serão apresentados neste trabalho.

As análises realizadas por microscopia óptica de luz polarizada (MOLP) revelaram que os ésteres **3a** a **3d** apresentaram mesomorfismo nemático quiral (N*) monotrópico, *Tabela 1*. No entanto, o éster **3e** apresentou forte tendência cristalização quando

analisado por MOLP, e a mesofase não pôde ser observada ou caracterizada.

Tabela 1. Temperaturas de transição de fase (℃) e rendimentos (%) dos ésteres quirais **3**.

Composto	Aquecimento	Resfriamento	Rend.
3a	K 68,7 I	I 64,6 N* 44,4 K	43
3b	K 79,7 I	I 71,0 N* 66,0	37
3c	K 82,6 I	I 76,5 N* 74,7 K	26
3d	K 82,5 I	I 76,1 N* 75,2 K	56
3e	K 80,4 I	I 77,9 K	27

As micrografias das mesofases dos ésteres quirais **3** revelam texturas características de (N*) como *oily streaks* e *fan-like*, quando comparadas à literatura⁵.

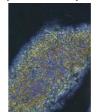


Figura 1. Micrografias das texturas de 3a (49,7°C), 3c (76,1°C) e 3d (75,8°C).

Conclusões

Assim como **3a** e **3b**, **3c** e **3d** apresentaram mesomorfismo nemático quiral (N*) monotrópico, sendo que **3e** apresentou forte tendência à cristalização, não permitindo a visualização de mesofase por MOLP. Acredita-se que variações estruturais que tornem a molécula mais rígida podem favorecer o aumento da faixa de existência da mesofase, bem como o surgimento de mesofases mais organizadas, como as esméticas, por exemplo.

Agradecimentos

CAPES/Prosup, BIBIC/CNPq, FURB e UFSC.

Co., 2003.

¹ Laboratório de Síntese de Cristais Líquidos e Materiais Moleculares Funcionais, CFM, Departamento de Química, Universidade Federal de Santa Catarina (UFSC), 88040-900, Florianópolis – SC.

² Departamento de Química, Universidade Regional de Blumenau (FURB), 89012-900, Blumenau – SC. E-mail: r.l.coelho@posgrad.ufsc.br

¹ Santos, D. R.; et al. Arkivoc, 2008, xvii, 157.

² Gallardo, H.; et al. Tetrahedron, 2011, 67, p. 9491-9499.

³ Torgova, S. I. *Pramana Journal of Physics*, **2003**, 61, 2, p. 239-248

Kitzerow, H.-S. Chirality in Liquid Crystals, Spring-Verlag, 2001.
Dierking, I. Textures of liquid crystal, Willey-Vhc Verlag VMGH &