Novas Dialquilfosforilidrazonas: Síntese e Avaliação da Interação com a Ribose 5-Fosfato Isomerase de *Trypanosoma cruzi* por *Docking*

Marcus Vinicius Hungaro Faria (IC), Letícia S. Zampirolli (PG), João Batista Neves DaCosta (PQ), Carlos Mauricio R. Sant'Anna (PQ)*. (santanna@ufrrj.br)

Departamento de Química, Universidade Federal Rural do Rio de Janeiro, CEP 23890-000, Seropédica, RJ. Palavras Chave: *Trypanosoma cruzi*, dialquilfosforilidrazonas, ribose 5-fosfato isomerase, docking.

Introdução

Dialquilfosforilidrazonas (DAF) sintetizadas por nosso grupo foram ativas na inibição de proliferação do protozoário *Trypanosoma cruzi.* A presença do grupo P(O)NHR(OR')₂ nestas moléculas sugere que a atividade esteja associada à inibição de enzimas essenciais para o parasito, que tenham substratos com o grupo P(O)OR(OR')₂, como a ribose 5-fosfato isomerase (Rpi, E.C. 5.3.1.6). Estudos de *docking* indicaram que as DAF podem interagir com a Rpi de *T. cruzi* favoravelmente.^{2,3} Dando continuidade a esses estudos, apresentamos a síntese e o *docking* de uma nova série de DAF, derivadas de naftoquinonas (fig. 1), na Rpi de *T. cruzi*.

Resultados e Discussão

As DAF sintetizadas neste trabalho foram obtidas a partir de dialquilfosforilidrazinas previamente sintetizadas e de naftoquinonas, em meio ácido, de acordo com o esquema geral da figura 1.

Figura 1. Esquema geral de síntese das DAF's.

O estudo de docking foi baseado na estrutura da Rpi de T. cruzi co-cristalizada com o ligante ácido 4desoxi-4-fosfo-D-eritronoidroxâmico (código 3K8C do PDB)⁴. Resíduos incompletos foram corrigidos com o programa Deep View 3.7, seguindo-se uma minimização de energia com o campo de força GROMOS96. A estrutura do ligante co-cristalizado foi retirada para o procedimento de docking das DAF. O docking foi realizado usando-se o programa Gold 5.0 (CCDC). Neste estudo foi usada a função de escore GoldScore⁵. Os vários posicionamentos receberam um escore, um número relativo; quanto maior o escore, melhor a interação prevista (tabela 1). No caso dos compostos com centros quirais (5, 6, 7 e 8), foi feito o docking dos dois enantiômeros. Os compostos com grupo ácido foram avaliados na forma neutra e desprotonada (fig. 2).

Todos os compostos foram obtidos com rendimentos superiores a 80%, com exceção dos compostos 4 (65%), 8 (35%) e 10 (40%). Os produtos foram confirmados por caracterização por IV, RMN ¹H e RMN ³¹P.

Tabela 1. Resultados do docking das DAF's.

Estrutura	R_1	R_2	R_3	escore
1	<i>i</i> -Bu	-	-	52,53
2	i-Pr	-	-	49,59
3	Et	-	-	49,30
4	Bu	-	-	55,29
5R	-	i-Bu	OSO ₃ H	50,48
5RA	-	i-Bu	OSO ₃ ⁻	62,00
5S	-	i-Bu	OSO₃H	50,96
5SA	-	i-Bu	OSO ₃ ⁻	51,07
6R	-	Bu	OSO ₃ H	63,48
6RA	-	Bu	OSO ₃	58,03
6S	-	Bu	OSO ₃ H	52,90
6SA	-	Bu	OSO ₃ ⁻	68,03
7R	-	i-Pr	OSO3H	49,88
7RA	-	i-Pr	OSO3 ⁻	50,20
7S	-	i-Pr	OSO3H	42,39
7SA	-	i-Pr	OSO3 ⁻	38,94
8R	-	Et	OSO3H	56,44
8RA	-	Et	OSO3 ⁻	77,22
8S	-	Et	OSO3H	39,59
8SA	-	Et	OSO3 ⁻	65,96
9	-	i-Pr	Н	53,96
10	-	Et	Н	58,30

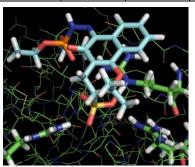


Figura 2. Exemplo de interação: composto 8RA faz ligações H no sítio ativo da Rpi de *T. cruzi*.

Conclusões

A síntese das DAF a partir de dialquilfosforilidrazinas e de naftoquinonas mostrou-se eficiente, com bons rendimentos, em geral. Os resultados de *docking* mostram que todas as DAF obtidas são previstas interagir favoravelmente no sítio ativo da RPi de *T. cruzi*. Em geral, os derivados com grupo ácido na forma desprotonada interagem melhor com a Rpi e, destes, os enantiômeros *R* têm melhores escores.

Agradecimentos

Faperj, CAPES, CNPq, INCT-INOFAR.

1 Zampirolli, L. S. Dissertação de Mestrado, UFRRJ, 2009.

²Faria, M. V. H. *et al.*, *Resumos da 34* SBQ, MED102,**2011**.

³Faria, M. V. H. et al., Res. XIII Encontro Regional daSBQ-Rio,**2011**.

⁴ Stern, A. L. et al., FEBS J., 2011, 278, 793,

5 Jones G. et al., J Mol. Biol. 1997, 267, 727.