Efeito da posição e tipo de substituinte sobre o complexo de transferência de carga formado entre derivados bis piridínios e iodeto.

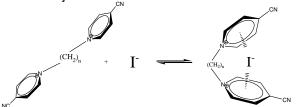
*João Raul B. de Souza (IC)¹, Ana Beatriz Balieiro (IC)¹, Fernando R. de Carvalho (PQ)¹, Wilker Caetano (PQ)¹, Mário J. Politi (PQ)², Noboru Hioka (PQ)¹, email: <u>joaoraul@live.com</u>

1 Departamento de Química – UEM/ Maringá PR. 2 Departamento de Química - USP / São Paulo SP.

Palavras Chave: complexos, transferência de carga, piridínios, substituintes.

Introdução

Os complexos de transferência de carga (CTC) caracterizam-se pela interação entre um doador (*D*) e um aceptor (*A*) de elétrons, levando ao surgimento de uma banda adicional no espectro eletrônico¹.


A interação *D-A*, promove a formação de um CTC com absorção, geralmente, na região do visível¹. Neste trabalho os compostos *A* são *N,N'*-alquildiil-bis(2-cianopiridínios) $C_n bis(2CP)^{2+}$, *N,N'*-alquildiil-bis(4-cianopiridínios) $C_n bis(4CP)^{2+}$ ambos com n = 3, *N,N'*- alquildiil-bis(2-bromopiridínios) $C_n bis(2BP)^{2+}$ com n = 3 e 6, *N,N'*-alquildiil-bis(2-azidopiridínios) com n = 3 e 6 e *N,N'*-alquildiil-bis(piridínios) com n = 6 e com o ânion iodeto (I) como *D*. Utilizando o derivado sem substituinte e os com substituintes cianos (CN), bromo (Br) e azida avaliou-se o efeito do substituinte, posição e tipo na interação *D-A* nos CTC. Para isto, utilizou-se como parâmetros os valores de constante de formação (K_{CTC}) e o fator mutiplicativo K_{CTC} x ϵ_{CTC} .

Resultados e Discussão

Considerando que a estequiometria dos CTC é 1:1 (Esq. 1), a equação de Benesi-Hildebrand² foi empregada para estimar os parâmetros K_{CTC} e ε_{CTC} para os CTC através das absorbâncias. Estes foram extraídos pelo plot de $[A]_{c}/Abs\ versus\ 1/[D]_{o}$, Tab. 1.

$$\frac{[A]_o}{Abs} = \frac{1}{K_{CTC}.\varepsilon_{CTC}.[D]_o} + \frac{1}{\varepsilon_{CTC}}$$
 (Eq. 1)

Onde $[A]_o$: concentração dos aceptores e $[D]_o$: concentração do doador.

Esq. 1. Estequiometria dos CTC, determinado pelo método de Job³, tendo como exemplo o C_3 bis $(4CP)^{2+}/I^-$.

Para a analise dos parâmetros é importante salientar que estes são diretamente afetados pela interação D-A com relação ao efeito estérico e a ativação ou desativação do anel piridínico provocado pela presença de substituinte no anel, posição e tipo. Na análise para o efeito do tipo de substituinte (n = 3, e substituinte na posição 2) observou-se maiores valores de K_{CTC} e K_{CTC} x ϵ_{CTC} para os C_3 bis $(2CP)^{2+}/I$ indicando assim uma tendência complexar uma melhor е superposição dos orbitais D-A. O grupo CN é um forte retirador de elétrons, promovendo uma maior

densidade de carga positiva no anel e como consequência uma maior interação com o l. Além disso, os efeitos estéricos causados por ele são aparentemente menores que os do grupo Br e azido.

Ao comparar os substituintes Br e azida (n = 3 ou 6) verifica-se que o Br apesar de causar impedimento estérico, ele também atua como um retirador de elétrons podendo aumentar a densidade de carga positiva no anel e consequentemente aumentar a interação no CTC. aparentemente pode atuar como doador de elétrons, diminuindo a densidade de carga positiva no anel e consequentemente diminuindo a interação no CTC. Este fato explica os maiores valores de K_{CTC} e $K_{CTC} \times \varepsilon_{CTC}$ para os $C_n bis(2BP)^{2+}/I$, principalmente para os de n = 6. Quando comparamos o derivado sem substituinte $(C_6bis(P)^{2+})$ e com $(C_6bis(2AP)^{2+})$ e C_6 bis(2BP)²⁺), confirma-se a proposta que o substituinte azida aparentemente desativa o anel (menor interação no CTC) enquanto que o Br ativa o anel (maior interação no CTC).

Tab. 1. K_{CTC} e ε_{CTC} dos CTC de l com diferentes aceptores em acetonitrila a 30.0 °C. Método B-H.

ceptores em acetoritina a 30,0 °C. Metodo B-11.			
	Aceptores	K crc (mol ⁻¹ L)	$K_{CTC}XE_{CTC}$ (10 ³ , mol ⁻² L ² cm ⁻¹)
	C ₃ bis(2AP) ²⁺	50±1	57±11
	C ₃ bis(2BP) ²⁺	47±1	97±3
	C ₃ bis(2CP) ²⁺	77±7	102±4
	C ₃ bis(4CP) ²⁺	93±1	142±1
	C ₆ bis(2AP) ²⁺	13±4	36±5
	$C_6 bis(P)^{2+}$	39±12	61±11
	C ₆ bis(2BP) ²⁺	63±7	74±7

Para o efeito da posição dos substituintes verificou-se que o grupo CN na posição 4 deve ter menor impedimento estérico. Isto justifica a maior estabilidade (maior K_{CTC} e K_{CTC} $x\epsilon_{CTC}$) para o C_3 bis(4CP $)^{2+}$ /I .

Conclusões

Diante dos resultados apresentados, verifica-se que a estabilidade dos CTC depende tanto da densidade de carga positiva do anel quanto dos efeitos estéricos envolvidos. Assim, o tipo e posição dos substituintes interferem na interação D-A, como pode ser visto nos valores de K_{CTC} e K_{CTC} x ϵ_{CTC} .

Agradecimentos

Fundação Araucária (SETI/PR) e CNPq.

¹ R.S. Mulliken, J. Am. Chem. Soc., 74 (1952) 811.

² Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703.

³ P. Job, Ann. Chim. Phys. 9 (1928) 113.