Avaliação da Evolução da Qualidade de Biodieseis produzidos de óleo de soja virgem, óleo de fritura e caixa de gordura durante a estocagem.

Daniela Moser^{1*} (PG), Angela Marchi Krause¹ (IC), Luciano Basto Oliveira² (PQ), Luiz Roberto Martins Pedroso² (PQ), Vinicyus Rodolfo Wiggers¹ (PQ), Henry França Meier¹ (PQ), Alberto Wisniewski Jr³ (PQ), Edesio Luiz Simionatto¹ (PQ)

Palavras Chave: Biodiesel, transesterificação, qualidade, parâmetros.

Introdução

O biodiesel é uma fonte de energia renovável, não tóxico, produzido a partir de óleos e gorduras naturais, e pode ser usado como substituto para o diesel de petróleo sem a modificação do motor diesel¹. A reação mais comum para produzir biodiesel é a de transesterificação². O mesmo, quando armazenado, pode gerar reações químicas formação levam а de produtos que comprometem а qualidade segundo especificações. Para identificá-las são realizados ensaios para garantir a característica da qualidade ao biodiesel, tais como índice de iodo, índice de acidez, densidade e viscosidade, teor de ésteres e estabilidade a oxidação, entre outros. Este trabalho determinação apresenta а dos parâmetros relacionados acima durante a armazenagem por seis meses de biodiesel obtido a partir de óleo de soja virgem (SOYA), óleo de fritura e caixa de gordura obtido na ETE - Alegria da Companhia Estadual de Águas e Esgoto do Rio de Janeiro (CEDAE).

Resultados e Discussão

Os biodieseis de óleo virgem e óleo de fritura foram preparados na FURB a partir da reação do óleo com metanol e catálise básica homogênea. O biodiesel de caixa de gordura foi preparado pela ECO100 em escala piloto instalada na ETE - Alegria. Após o preparo e caracterização dos biodieseis, os mesmos foram acondicionados em diferentes frascos para a análise dos referidos parâmetros. Os parâmetros iniciais estão apresentados na Tabela 1. Durante as análises, verificou-se que o frasco de vidro (âmbar) apresentou a menor influência nos parâmetros de qualidade avaliados. No plástico (polietileno), o índice de acidez apresentou um aumento de 76%, que com a diminuição do índice de iodo pode estar relacionado à oxidação de duplas ligações de ácidos insaturados da composição do biodiesel, o que pode ser verificado através da variação do tempo de estabilidade do ensaio que passou de 0,3h para 0,006h.

Tabela 1. Parâmetros dos biodieseis antes da armazenagem.

	Ο.		O. C.
Parâmetros	Virgem	O. Fritura	Gordura
Índice de Acidez(mg KOH g ⁻¹)	0,14	0,13	0,22
Índice de lodo (cg I_2 g^{-1})	123,7	123	55,32
Teor de Ésteres (%)	98,5	99,6	92.6
Viscosidade cin. 40°C (cSt)	3,8	4,3	4,8
Est. A Oxidação (h)	0,2	0,3	7,42

A oxidação das insaturações que na maior parte dos casos leva a formação de ácidos carboxílicos, e consequentemente altera o pH, aumentando o índice de acidez e desencadeando diversas reações degradativas paralelas. A viscosidade é afetada pelo aumento da cadeia carbônica, onde pode estar ocorrendo a formação de polímeros das cadeias de ácidos graxos. A maior variação para o biodiesel de O. Fritura foi observado no armazenamento em embalagem metálica (folha-de-flandres/aço-base) que passou de 4,3 cSt para 6,1 cSt. O teor de ésteres inicialmente esteve dentro especificações, sendo que o mínimo de éster para biodiesel é de 96,5%. Porém em um ambiente propício a hidrólise os ésteres são convertidos novamente em ácidos graxos, diminuindo esse teor e alterando os demais parâmetros. As amostras produzidas pela ECO100 apresentam o mesmo comportamento.

Conclusões

Os resultados obtidos mostraram que o melhor recipiente de armazenagem até o momento foi o vidro, porque manteve uma linearidade nos valores, seguido pelo plástico e o menos favorável ao armazenamento foi a embalagem metálica. Fica evidente a interferência de que quando ocorre a variação de um parâmetro da qualidade provoca alteração nos demais.

Agradecimentos

CNPq - FURB - CEDAE

¹Universidade Regional de Blumenau – FURB – SC (*daniii_moser@yahoo.com.br), ²ECO100 – Desenvolvimento Sustentado LTDA – RJ, ³Universidade Federal de Sergipe – UFS – SE

¹ Demirbas, A. Energy Conversion and Management. **2009**, 50, 923.

² Berrios, M.: Gutiérrez, M. G.; Martín, M. A. e Martín, A. Biomass and Bioenergy **2010**, 34, 312.