Complexos de Cobre (II) com Bases de Schiff Tridentadas Derivadas da Diaminomaleonitrila: Síntese e Caracterização

Camila H. Ogihara*1(IC), José W. da Cruz Júnior1(PG), Edward R. Dockal1(PQ)

Palavras Chave: Complexos de cobre (II); Bases de Schiff

Introdução

Os ligantes Bases de Schiff são resultantes da reação de condensação entre uma amina primária e um composto que possua um grupo carbonila ativo. Essas Bases possuem uma grande versatilidade, tanto estérea quanto eletrônica e que podem ser modificadas escolhendo aminas apropriadas e os substituintes do grupo carbonila¹.

A necessidade de se empreender o estudo de complexos de cobre (II) com Bases tridentadas se deve a sua importância como agentes quimioterápicos², seu uso como catalisadores na área industrial e na pesquisa como modelo para o estudo da atividade de metaloenzimas como a catecol oxidase³.

Este trabalho apresenta a síntese e caracterização de complexos de Cu(II) com Bases de Schiff tridentadas sintetizadas a partir da diaminomaleonitrila e salicilaldeído ou derivados.

Resultados e Discussão

Os complexos foram sintetizados a partir de adaptações de procedimentos publicados na literatura⁴. A FIGURA 1 apresenta a estrutura genérica para os compostos obtidos.

FIGURA 1. Estrutura proposta para os compostos obtidos: (1) R=H, (2) R=MeO, (3) R=EtO.

Os complexos foram solúveis em DMSO, acetona e CH_3CN , pouco solúveis em metanol e $CHCl_3$ e insolúveis em H_2O e hexano. Os compostos apresentaram-se não eletrólitos em acetonitrila e DMSO. Os dados gerais de caracterização dos compostos obtidos encontram-se na TABELA 1.

TABELA 1. Dados gerais de caracterização dos compostos obtidos:

Composto	MM (g.mol ⁻¹)	Rendimento (%)	Ponto de Fusão(°C)
(1)	309,2	66,1	240,0 (d)
(2)	339,2	48,2	240,9 (d)
(3)	353,2	46,9	>300,0(d)

(d) degradação

Os espectros no infravermelho mostraram os estiramentos referentes às estruturas propostas para os compostos na TABELA 2.

TABELA 2. Vibrações características dos compostos.

Bandas (cm ⁻¹)	(1)	(2)	(3)
νC <u></u> N	2219	2202	2218
νC-N	1432	1429	1431
vC-O	1246	1245	1245
νCu-N	569	517	532
νCu-O	457	429	456
νCu-Cl	359	361	357

Os espectros eletrônicos apresentaram bandas de alta absortividade, atribuídas às transições $\pi \to \pi^*$ na região entre 260-400 nm para os complexos. Não foi possível observar a banda d \to d, pois a mesma está encoberta pela banda TCLM na faixa de 530-565 nm.

Conclusões

Devido aos resultados obtidos nas técnicas de caracterização, conclui-se que os compostos sintetizados apresentam as estruturas propostas.

Agradecimentos

Os autores agradecem ao CNPq, CAPES e FAPESP pelo fomento.

^{*}camila ogihara@hotmail.com.br

¹Laboratório de Sínteses Inorgânicas, Catálises e Cinética- LSICC, Departamento de Química, Universidade Federal de São Carlos São Carlos/SP.

¹Larrow, J. F.; et al. J. Org. Chem. 1994, 5, 1939.

²Routier, S.; et al. J. Org. Chem. 1996, 61, 2326.

³Satcher, J. H.; et al. Inorg. Chem. **1995**, 34, 3317.

⁴Costes, J.-P.; et al ,Inorg. Chem.Acta. 1998, 274, 73.