Síntese e Avaliação da Atividade Antibacteriana de Compostos Híbridos de Quinolina

Rafael Mafra de P. Dias¹* (PG), Gustavo Senra G. de Carvalho¹ (PQ), Cláudio Galuppo Diniz (PQ)², Vânia Lúcia da Silva² (PQ), Adilson David da Silva¹ (PQ)

Palavras Chave: quinolinas, antibacterianos, síntese, avaliação biológica.

Introdução

Compostos quinolínicos vêm emergindo com bons resultados frente bactérias multiresistentes que têm se tornado um grave problema de saúde pública mundial como cocos Gram-positivos (*Staphylococcus aureus* - CIM = 6,9 ng/mL) e cocos Gram-negativos (*Escherichia coli* - CIM = 46,1 ng/mL), demonstrando uma alternativa promissora a ser explorada. ¹

Adicionalmente, a literatura reporta que o design de novas moléculas "híbridas" (combinação de duas ou mais entidades farmacológicas em uma única estrutura) contendo o núcleo quinolínico tem corroborado como uma estratégia viável na terapia de algumas doenças. ²

Desta maneira, este trabalho reporta a síntese de compostos "híbridos" de quinolina e a avaliação da susceptibilidade de algumas bactérias frente a tais compostos.

Resultados e Discussão

A síntese dos "híbridos de quinolina" seguiu o escopo das SN_{Ar} , partindo do composto 4,7-dicloroquinolina e acoplando-o a diferentes compostos farmacologicamente importantes como derivados da sulfanilamida (1 a-e) e análogos da isoniazida (1 f-j) – figura 1.

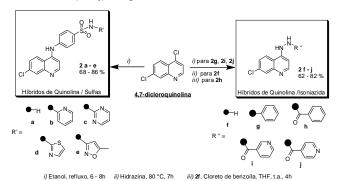


Figura 1. Esquema de síntese dos híbridos de quinolina.

Os compostos foram obtidos em bons rendimentos e caracterizados por diferentes técnicas

espectroscópicas, a saber: espectroscopia na região do infravermelho, RMN ¹H e de ¹³C.

Posteriormente, avaliou-se a susceptibilidade de bactérias Gram-positivas e Gram-negativas frente aos compostos sintetizados (Tabela 1).

Tabela 1. Halo de inibição dos compostos testados (mm)

Composto	S. aureus	S. epidermides	E. coli	P. aeruginosa
2a	-	Ū	-	-
2b	-	=	-	-
2c	-	=	16	-
2d	-	=	10	-
2e	10	=	10	-
2f	-	i	-	-
2g	-	=	-	-
2h	16	16	-	-
2i	-	16	20	-
2j	14	ē	12	18
Sulfanilamida	-	=	-	-
Sulfapiridina	14	ē	14	-
Sulfadiazina	14	=	18	-
Sulfatiazol	20	-	20	-
Sulfametozaxol	20	-	20	-
Isoniazida	-	=	-	-
DMSO	-	-	-	-

Conclusões

Todos os compostos foram obtidos em rendimentos satisfatórios (62-86%) e os testes biológicos antibacterianos mostraram-se promissores, visto que dos 10 compostos, 6 deles apresentaram bons resultados prévios. Testes para determinação da CIM estão sendo realizados.

Agradecimentos

A UFJF, a FAPEMIG e a CAPES pelas bolsas concedidas.

^{*}e-mail: rafaelmafrapd@yahoo.com.br

¹ Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Campus Universitário Martelos, Juiz de Fora - MG, 36036-900, Brasil.

² Departamento de Parasitologia, Microbiologia e Imunologia, ICB, Universidade Federal de Juiz de Fora, Campus Universitário Martelos, Juiz de Fora - MG, 36036-900, Brasil.

¹ Bax, D. B. et al; *Nature* **2010**, 466, 935.

² Kouznetsova, V. V.; Gómez-Barrio, A.; *Eur. J. Med. Chem.* **2009**, 44, 3091.